Journal of Electronic Materials

, Volume 32, Issue 11, pp 1195–1202 | Cite as

Growth of an intermetallic compound layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during aging treatment

  • Jeong-Won Yoon
  • Chang-Bae Lee
  • Seung-Boo Jung
Special Issue Paper


Growth kinetics of intermetallic compound (IMC) layers formed between the Sn-3.5Ag-5Bi solder and the Cu and electroless Ni-P substrates were investigated at temperatures ranging from 70°C to 200°C for 0–60 days. With the solder joints between the Sn-Ag-Bi solder and Cu substrates, the IMC layer consisted of two phases: the Cu6Sn5 (η phase) adjacent to the solder and the Cu3Sn (ε phase) adjacent to the Cu substrate. In the case of the electroless Ni-P substrate, the IMC formed at the interface was mainly Ni3Sn4, and a P-rich Ni (Ni3P) layer was also observed as a by-product of the Ni-Sn reaction, which was between the Ni3Sn4 IMC and the electroless Ni-P deposit layer. With all the intermetallic layers, time exponent (n) was approximately 0.5, suggesting a diffusion-controlled mechanism over the temperature range studied. The interface between electroless Ni-P and Ni3P was planar, and the time exponent for the Ni3P layer growth was also 0.5. The Ni3P layer thickness reached about 2.5 µm after 60 days of aging at 170°C. The activation energies for the growth of the total Cu-Sn compound layer (Cu6Sn5 + Cu3Sn) and the Ni3Sn4 IMC were 88.6 kJ/mol and 52.85 kJ/mol, respectively.

Key words

Sn-3.5Ag-5Bi solder intermetallic compound isothermal aging electroless Ni-P P-rich Ni layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.O. Alam, Y.C. Chan, and K.C. Hung, J. Electron. Mater. 31, 1117 (2002).Google Scholar
  2. 2.
    S.W. Chen and Y.W. Yen, J. Electron. Mater. 28, 1203 (1999).Google Scholar
  3. 3.
    T. Takemoto, A. Matsunawa, and M. Takahashi, J. Mater. Sci. 32, 4077 (1991).CrossRefGoogle Scholar
  4. 4.
    C.B. Lee, S.B. Jung, Y.E. Shin, and C.C. Shur, Mater. Trans. 42, 751 (2001).CrossRefGoogle Scholar
  5. 5.
    K. Suganuma, T. Shotoku, Y. Nakamura, and K. Niihara, J. Mater. Res. 13, 2859 (1998).Google Scholar
  6. 6.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).CrossRefGoogle Scholar
  7. 7.
    M. McCormack and S. Jin, J. Electron. Mater. 23, 715 (1994).Google Scholar
  8. 8.
    W. Yang, R.W. Messler, and L.E. Felton, J. Electron. Mater. 23, 765 (1994).Google Scholar
  9. 9.
    J.W. Yoon, C.B. Lee, and S.B. Jung, Mater. Trans. 43, 1821 (2002).CrossRefGoogle Scholar
  10. 10.
    D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, J. Electron. Mater. 26, 883 (1997).Google Scholar
  11. 11.
    C. Kanchanomai, Y. Miyashita, and Y. Mutoh, J. Electron. Mater. 31, 456 (2002).Google Scholar
  12. 12.
    K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002).CrossRefGoogle Scholar
  13. 13.
    C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).Google Scholar
  14. 14.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).CrossRefGoogle Scholar
  15. 15.
    P.T. Vianco, A.C. Kilgo, and R. Grant, J. Electron. Mater. 24, 1493 (1995).Google Scholar
  16. 16.
    P.T. Vianco, K.L. Erickson, and P.L. Hopkins, J. Electron. Mater. 23, 721 (1994).Google Scholar
  17. 17.
    C.W. Hwang, J.G. Lee, K. Suganuma, and H. Mori, J. Electron. Mater. 32, 52 (2003).Google Scholar
  18. 18.
    K. Suganuma, Current Opinion Solid State Mater. Sci. 5, 55 (2001).CrossRefGoogle Scholar
  19. 19.
    M.L. Huang, C.M.L. Wu, J.K.L. Lai, and Y.C. Chan, J. Electron. Mater. 29, 1021 (2000).CrossRefGoogle Scholar
  20. 20.
    Z. Moser, W. Gasior, and J. Pstrus, J. Electron. Mater. 30, 1073 (2001).Google Scholar
  21. 21.
    P.T. Vianco and J.A. Rejent, J. Electron. Mater. 28, 1127 (1999).Google Scholar
  22. 22.
    P.T. Vianco and J.A. Rejent, J. Electron. Mater. 28, 1138 (1999).Google Scholar
  23. 23.
    G. Ghosh, Acta Mater. 48, 3719 (2000).CrossRefGoogle Scholar
  24. 24.
    S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 28, 1209 (1999).Google Scholar
  25. 25.
    P.T. Vianco, P.F. Hlava, and A.C. Kilgo, J. Electron. Mater. 23, 583 (1994).Google Scholar
  26. 26.
    Y.D. Jeon, K.W. Paik, K.S. Bok, W.S. Choi, and C.L. Cho, J. Electron. Mater. 31, 520 (2002).Google Scholar
  27. 27.
    C.B. Lee, I.Y. Lee, S.B. Jung, and C.C. Shur, Mater. Trans. 43, 751 (2002).CrossRefGoogle Scholar
  28. 28.
    J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).CrossRefGoogle Scholar
  29. 29.
    M.O. Alam, Y.C. Chan, and K.C. Hung, Microelectron. Reliab. 42, 1065 (2002).CrossRefGoogle Scholar
  30. 30.
    C.Y. Lee and K.L. Lin, Thin Solid Films 229, 63 (1993).CrossRefGoogle Scholar
  31. 31.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagram, 2nd ed. (Materials Park, OH: ASM International, 1990), pp. 2863–2864.Google Scholar
  32. 32.
    W.J. Tomlinson and H.G. Rhodes, J. Mater. Sci. 22, 1769 (1987).CrossRefGoogle Scholar
  33. 33.
    D. Gur and M. Bamberger, Acta Mater. 46, 4917 (1998).CrossRefGoogle Scholar
  34. 34.
    C.Y. Lee and K.L. Lin, Thin Solid Films 249, 201 (1994).CrossRefGoogle Scholar
  35. 35.
    J. Burke, The Kinetics of Phase Transformations in Metals, trans. K. Hirano and H. Hori (Tokyo: Kyoritsu, 1972), p. 190.Google Scholar
  36. 36.
    P.L. Tu, Y.C. Chan, K.C. Hung, and J.K.L. Lai, Scripta Mater. 44, 317 (2001).CrossRefGoogle Scholar
  37. 37.
    C.B. Lee, S.J. Suh, Y.E. Shin, C.C. Shur, and S.B. Jung, Proc. 8th Symp. on Microjoining and Assembly Technology in Electronics (Yokohama, Japan: Japan Welding Society, 2002), pp. 351–356.Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • Jeong-Won Yoon
    • 1
  • Chang-Bae Lee
    • 2
  • Seung-Boo Jung
    • 1
  1. 1.Department of Advanced Materials EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.R&D CenterSAMSUNG ELECTRO-MECHANICS Co., Ltd. 314SuwonKorea

Personalised recommendations