Journal of Electronic Materials

, Volume 31, Issue 7, pp 802–805

Infrared spectroscopy of chromium-doped cadmium selenide

  • J. -O. Ndap
  • C. I. Rablau
  • K. Morrow
  • O. O. Adetunji
  • V. A. Johnson
  • K. Chattopadhyay
  • R. H. Page
  • A. Burger
Special Issue Paper

Abstract

The maximum optical-absorption cross section of Cr2+ ions was evaluated from near-infrared (NIR) absorption spectroscopy and direct measurements of the chromium concentration in Cr2+:CdSe crystals. The emission lifetime of the excited state, 5E, of Cr2+ was measured as a function of Cr2+ concentration in the 2×1017 −2×1018 ions/cm3 range and as a function of temperature from 77–300 K. Lifetime values were as high as ∼6 µs in the 77–250 K range and decreased to ∼4 µs at 300 K because of nonradiative decays. Assuming that most of the Cr dopant is in the Cr2+ state, an optical-absorption cross section σa of (1.94±0.56) × 10−18 cm2 was calculated. Implications for laser performance are discussed.

Key words

Cr2+:CdSe optical-absorption cross section tunable solid-state lasers emission lifetime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Deloach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).CrossRefGoogle Scholar
  2. 2.
    R.H. Page, K.I. Schaffers, L.D. Deloach, G.D. Wilke, F.D. Patel, J.B. Tassano, S.A. Payne, W.F. Krupke, K.T. Chen, and A. Burger, IEEE J. Quantum Electron. 33, 609 (1997).CrossRefGoogle Scholar
  3. 3.
    U. Hommerich, X. Wu, V.R. Davis, S.B. Trivedi, K. Grasza, R.J. Chen, and S. Kutcher, Opt. Lett. 22, 1180 (1997). J.T. Seo, U. Hommerich, S.B. Trivedi, R.J. Chen, S. Kutcher, and K. Grasza, Conf. of Lasers and Electro-Optics (OSA 1998 Technical Digest Series, paper CTuC3).Google Scholar
  4. 4.
    J. McKay, K.L. Schepler, and G. Catella, Opt. Lett. 24, 1575 (1999).Google Scholar
  5. 5.
    J. Kreissl and H.-J. Schulz, J. Cryst. Growth 161, 236 (1996).CrossRefGoogle Scholar
  6. 6.
    A. Zunger, Solid State Physics ed. F. Seitz, D. Turnbull, and H. Ehrenreich (New York: Academic Press, 1986), vol. 39, p. 275.Google Scholar
  7. 7.
    J.T. Vallin, G.A. Slack, S. Roberts, and A.E. Hughes, Phys. Rev. B 2, 4313 (1970).CrossRefGoogle Scholar
  8. 8.
    A.S. Abhvani, C.A. Bates, B. Clerjaud, and D.R. Pooler, J. Phys. C15, 1345 (1982).Google Scholar
  9. 9.
    A.I. Belogorokhov, M.I. Kulakov, V.A. Kremerman, A.L. Natadze, Y.B. Rozenfeld, and I. Ryskin, Sov. Phys. JETP 67, 1184 (1988).Google Scholar
  10. 10.
    G. Goetz, H. Zimmermann, and H.-J. Schulz, Z. Phys. B91, 429 (1993).CrossRefGoogle Scholar
  11. 11.
    V.R. Davis, X. Wu, U. Hömmerich, K. Grasza, S.B. Trivedi, and Z. Yu, J. Lumin. 72–74, 281 (1997).CrossRefGoogle Scholar
  12. 12.
    K.L. Schepler, S. Kuck, and L. Shiozawa, J. Lumin. 72–74, 116 (1997).CrossRefGoogle Scholar
  13. 13.
    R.H. Page, J.A. Skidmore, K.I. Schaffers, R.J. Beach, S.A. Payne, and W.F. Krupke, OSA Trends In Optics and Photonics, ed. C.R. Pollock and W.R. Bosenberg (Washington, D.C.: OSA, 1997), pp. 208–210.Google Scholar
  14. 14.
    J.-O. Ndap, O.O. Adetunji, K. Chattopadhyay, C.I. Rablau, S.U. Egarievwe, X. Ma, S. Morgan, and A. Burger, J. Cryst. Growth 211, 290 (2000).CrossRefGoogle Scholar
  15. 15.
    J.T. Vallin and G.D. Watkins, Phys. Rev. B 9, 2051 (1974).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • J. -O. Ndap
    • 1
  • C. I. Rablau
    • 2
  • K. Morrow
    • 1
  • O. O. Adetunji
    • 1
  • V. A. Johnson
    • 1
  • K. Chattopadhyay
    • 1
  • R. H. Page
    • 3
  • A. Burger
    • 1
  1. 1.Center for Photonic Materials and DevicesFisk UniversityNashville
  2. 2.Department of PhysicsWest Virginia UniversityMorgantown
  3. 3.Lawrence Livermore National LaboratoryLivermore

Personalised recommendations