Journal of Electronic Materials

, Volume 31, Issue 10, pp 1022–1031

Pad effects on material-removal rate in chemical-mechanical planarization

  • Ashraf Bastawros
  • Abhijit Chandra
  • Yongjin Guo
  • Bo Yan
Special Issue Paper

Abstract

The role of a porous pad in controlling material-removal rate (MRR) during the chemical-mechanical planarization (CMP) process has been studied numerically. The numerical results are used to develop a phenomenological model that correlates the forces on each individual abrasive particle to the applied nominal pressure. The model provides a physical explanation for the experimentally observed domains of pressure-dependent MRR, where the pad deformation controls the load sharing between active-abrasive particles and direct pad-wafer contact. The predicted correlations between MRR and slurry characteristics, i.e., particle size and concentration, are in agreement with experimentally measured trends reported by Ouma1 and Izumitani.2

Key words

Chemical-mechanical planarization material-removal rate porous pad abrasive particle asperity contact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.O. Ouma (Ph.D. thesis, Massachusetts Institute of Technology, 1998).Google Scholar
  2. 2.
    T. Izumitani, Treatise Mater. Sci. Technol. 17, 115 (1979).Google Scholar
  3. 3.
    J.M. Steigerwald, S.P. Murarka, and R.J. Gutmann. Chemical Mechanical Planarization of Microelectronic Materials (New York: John Wiley & Sons, Inc., 1997).Google Scholar
  4. 4.
    C.W. Kaanta et al., Proc. VMIC Conf. (1991), p. 144.Google Scholar
  5. 5.
    H. Kranenberg and P.H. Woerlee, J. Electrochem. Soc. 145, 1285 (1998).CrossRefGoogle Scholar
  6. 6.
    M. Jiang, N. Wood, and R. Komanduri, J. Eng. Mater. Technol. 120, 304 (1998).Google Scholar
  7. 7.
    F.W. Preston, J. Soc. Glass Technol. 11, 214 (1927).Google Scholar
  8. 8.
    D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin, and T. Cale, J. Electrochem. Soc. 144, 1121 (1997).CrossRefGoogle Scholar
  9. 9.
    W.T. Tseng, J.H. Chin, and L.C. Kang, J. Electrochem. Soc. 146, 1952 (1999).CrossRefGoogle Scholar
  10. 10.
    B. Zhao and F.G. Shi, Int. J. CMP 1, 13 (2000).Google Scholar
  11. 11.
    J. Luo and D.A. Dornfeld, IEEE Trans. Semicond. Manuf. 14, 112 (2001).CrossRefGoogle Scholar
  12. 12.
    G. Fu, A. Chandra, S. Guha, and G. Subhash, IEEE Trans. Semicond. Manuf. 14, 406 (2001).CrossRefGoogle Scholar
  13. 13.
    L.J. Gibson and M.F. Ashby, Cellular Solids, 2nd ed. (Cambridge, United Kingdom: Cambridge University Press, 1997).Google Scholar
  14. 14.
    The nanoindentation test was carried out by MTS, Inc.Google Scholar
  15. 15.
    G. Fu and A. Chandra, submitted to J. Electron. Mater. Google Scholar
  16. 16.
    ABAQUS, User Manual, Ver. 6.1, 2001, Pawtucket, RI.Google Scholar
  17. 17.
    A.-F. Bastawros, H. Bart-Smith, and A.G. Evans, J. Mech. Phys. Solids 48, 301 (2000).CrossRefGoogle Scholar
  18. 18.
    Y. Ye, R. Biswas, J. Morris, A.-F. Bastawros, and A. Chandra, Chemical-Mechanical Planarization, ed. S.V. Babu, R. Singh, N. Hayasaka, and M. Oliver, MRS Proc. 732E (Pittsburgh, PA: Materials Research Society, 2002), pp. I4.8.1-6.Google Scholar
  19. 19.
    W. Che, Y. Guo, A. Bastawros, and A. Chandra, Chemical-Mechanical Planarization, ed. S.V. Babu, R. Singh, N. Hayasaka, and M. Oliver, MRS Proc. 732E (Pittsburgh, PA: Materials Research Society, 2002), pp. I4.3.1-6.Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Ashraf Bastawros
    • 1
  • Abhijit Chandra
    • 2
  • Yongjin Guo
    • 2
  • Bo Yan
    • 1
  1. 1.Department of Aerospace Engineering and Engineering MechanicsIowa State UniversityAmes
  2. 2.Department of Mechanical EngineeringIowa State UniversityUSA

Personalised recommendations