Advertisement

Journal of Electronic Materials

, Volume 30, Issue 12, pp 1584–1594 | Cite as

Processing of Ta2O5 powders for electronic applications

  • RAJ P. Singh
Special Issue Paper

Abstract

The particle size, surface area, morphology, and purity of tantalum pentoxide are critical for some of its applications in the manufacture of several, electronic products. Although the purity of different grades of Ta2O5, such as standard technical grade, carbide grade, and optical grade, have been well documented, there is no report on the morphology and other surface characteristics of Ta2O5 powders. The objective of this paper is to review various methods and recent developments in the processing of tantalum oxide powders. The other objective of this paper is to report on the morphology, particle size, and surface area of tantalum oxide obtained from different methods of preparation. The work reported in this paper will be useful for researchers involved in the development of tantalum-related electronic materials.

Key words

Tantalum pentoxide Ta2O5 powders methods of preparation morphology particle size surface area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.F. Cava, W.F. Peck, Jr., and J.J. Krajewski, Nature 377, 215 (1995).CrossRefGoogle Scholar
  2. 2.
    K. Niwa and I. Ichikawa, U.S. patent 4,673,554 (16 June 1987).Google Scholar
  3. 3.
    J. Szanics, T. Okubo, and M. Kakihana, J. Alloys Compounds 281, 206 (1998).CrossRefGoogle Scholar
  4. 4.
    V.B. Reddy and H.K. Cheung, U.S. patent 5,112,524 (19 July 1991).Google Scholar
  5. 5.
    G.J. Korinek, Tantalum, ed. E. Chen, A. Crowson, E. Lavernia, W. Ebihara, and P. Kumar (Warrendale, PA: TMS, 1996), pp. 3–15.Google Scholar
  6. 6.
    R.E. Droegkamp, M. Schussler, J.B. Lambert, and D.F. Taylor; Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. New York: John Wiley & Sons, 1983), vol. 22, pp. 541–564.Google Scholar
  7. 7.
    Elements, p. 12 (1992).Google Scholar
  8. 8.
    A.N. Zelikman, O.E. Krein, and G.V. Samsonov, Metallurgy of Rare Metals, ed. L.V. Belyaevskaya (Jerusalem, 1966), ch. II; available from the U.S. Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, VA 22151.Google Scholar
  9. 9.
    R.P. Singh and M.J. Miller, Titanium Extraction and Processing, ed. B. Mishra and G.J. Kipouris (Warrendale, PA: TMS, 1997), pp. 31–43.Google Scholar
  10. 10.
    R.P. Singh, M.J. Miller, and J.N. Dann, Powder Diffraction 14, 231 (1999).Google Scholar
  11. 11.
    J.R. Werning, K.B. Higbie, J.T. Grace, B.F. Speece, and H.L. Gilbert, Ind. Eng. Chem. (Eng. Des. Process. Dev.) 46, 644 (1954).Google Scholar
  12. 12.
    J.A. Pierret, U.S. patent 3,117,833 (14 January 1964).Google Scholar
  13. 13.
    C.W. Carlson and R.H. Nielsen, J. Met., p. 472 (1960).Google Scholar
  14. 14.
    D.F. Taylor, Chem. Eng. Progr. 54, 47 (1958).Google Scholar
  15. 15.
    R.H. Capps and G.S. Harman, U.S. patent 3,712,939 (23 January 1973).Google Scholar
  16. 16.
    V.G. Mayorov and A.I. Nikolaev, Hydrometallurgy 41, 71 (1996).CrossRefGoogle Scholar
  17. 17.
    S. Roth, J.L. Waring, and H.S. Parker, J. Solid State Chem. 2, 445 (1970).CrossRefGoogle Scholar
  18. 18.
    E.J. Bielecki, Advances in Extractive Metallurgy (London: The Institute of Mining Metallurgy, 1968), pp. 776–788.Google Scholar
  19. 19.
    H. Endo, N. Hirate, and M. Tezuka, U.S. patent 4,446,115 (2 May 1984).Google Scholar
  20. 20.
    P. Brochers and G.J. Korinek, Extraction Metallurgy of Refractory Metals, ed. H.Y. Sohn, O.N. Carlson, and J.T. Smith (New York: TMS-AIME, 1981), pp. 95–106.Google Scholar
  21. 21.
    J. Eckert, Tantalum, ed. E. Chen, A. Crowson, E. Lavernia, W. Ebihara, and P. Kumar, (Warrendale, PA: TMS 1996), pp. 55–61.Google Scholar
  22. 22.
    R.P. Singh and M.J. Miller, U.S. patent 5,635,146 (3 June 1997).Google Scholar
  23. 23.
    R.P. Singh and M.J. Miller, U.S. patent 6,010,676 (4 January 2000).Google Scholar
  24. 24.
    I.I. Baram, J. Appl. Chem. USSR 38, 2181 (1965).Google Scholar
  25. 25.
    N. Terao, Jpn. J. Appl. Phys. 6, 21 (1967).CrossRefGoogle Scholar
  26. 26.
    C.E. Rice and J.L. Jackel, J. Solid State Chem. 41, 308 (1982).CrossRefGoogle Scholar
  27. 27.
    M. Abe, Inorganic Ion Exchange Materials, ed. A. Clearfield (Boca Raton, FL: CRC Press Inc., 1982), pp. 161–273.Google Scholar
  28. 28.
    V.V. Sakharov, N.E. Ivanova, S.S. Korovin, and M.A. Zakharov, Russ. J. Inorg. Chem. 19, 313 (1974).Google Scholar
  29. 29.
    V.A. Titova, V.E. Kozel, I.G. Slatinskaya, G.F. Panko, and V.G. Pitsyuga, Russ. J. Inorg. Chem. 21, 165 (1976).Google Scholar
  30. 30.
    A. Kishimoto, H. Sugimoto, T. Nanba, and T. Kudo, J. Solid State Chem. 90, 102 (1991).CrossRefGoogle Scholar
  31. 31.
    T. Ogihara, T. Ikemoto, N. Mizutani, and M. Kato, J. Mater. Sci. 21, 2771 (1986).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2001

Authors and Affiliations

  • RAJ P. Singh
    • 1
  1. 1.Chemicals & Powders Research and DevelopmentOSRAM SYLVANIATowanda

Personalised recommendations