Journal of Electronic Materials

, Volume 30, Issue 7, pp 861–865 | Cite as

Effect of Pt barrier on thermal stability of Ti/Al/Pt/Au in ohmic contact with Si-implanted n-type GaN layers

  • Ching-Tingh Lee
  • Hsiao-Wei Kao
  • Fu-Tasi Hwang
Regular Issue Paper


We report the effect of the Pt barrier on the thermal stability of Ti/Al/Pt/Au in ohmic contact with Si-implanted n-type GaN layers. Ti/Al/Au (25/100/200 nm) and Ti/Al/Pt/Au (25/100/50/200 nm) multilayers were, respectively, deposited on as-implanted and recovered Si-implanted n-type GaN samples. The associated dependence of the specific contact resistance on the annealing time at various temperatures was compared. The long-term ohmic stability of a Ti/Al/Pt/Au multilayer in contact with a Si-implanted n-type GaN layer was much better than that of the Ti/Al/Au multilayer. This superior stability is attributed to the barrier function of the Pt interlayer. The Pt/Au bilayer can also passivate the propensity of oxidation for the conventional Ti/Al bilayer in contact with n-type GaN layers at elevated temperatures.

Key words

Ohmic contact n-type GaN specific contact resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nakamura and G. Fashol, The Blue Laser Diodes (Berlin: Springer Verlag, 1997).Google Scholar
  2. 2.
    S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
  3. 3.
    M.S. Shur and M. Asif Khan, Gallium Nitride (GaN) II, Semiconductors and Semimetls Vol. 57, ed. J.I. Pankove and T.D. Moustakas (San Diego, CA: Academic Press, 1999).Google Scholar
  4. 4.
    N.X. Nguyen, B.P. Keller, S. Keller, Y.F. Wu, M. Le, C. Nguyen, S.P. Denbaars, U.K. Mishra, and D. Grider. Electron. Lett. 33, 334 (1997).CrossRefGoogle Scholar
  5. 5.
    S.J. Cai, R. Li, Y.L. Chen, L. Wong, W.G. Wu, S.G. Thomas, and K.L. Wang, Electron, Lett. 34, 2354 (1998).CrossRefGoogle Scholar
  6. 6.
    Q.Z. Liu and S.S. Lau, Solid State Electron. 42, 677 (1998).CrossRefGoogle Scholar
  7. 7.
    S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999).CrossRefGoogle Scholar
  8. 8.
    M.E. Lin, Z. Ma, F.Y. Huang, Z.F. Fan, L.H. Allen, and H. Morkoc, Appl. Phys. Lett. 64, 1003 (1994).CrossRefGoogle Scholar
  9. 9.
    B.P. Luther, S.E. Moheny, T.N. Jackson, M.A. Khan, Q. Chen, and J.W. Yang, Appl. Phys. Lett. 70, 57 (1997).CrossRefGoogle Scholar
  10. 10.
    C.T. Lee, H.P. Shiao, N.T. Yeh, C.D. Tsai, Y.T. Lyu, and Y.K. Tu, Solid State Electron. 41, 1 (1997).CrossRefGoogle Scholar
  11. 11.
    J. Burm, K. Chu, W.A. Davis, W.J. Schaff, L.F. Eastman, and T.J. Eustis, Appl. Phys. Lett. 70, 464 (1997).CrossRefGoogle Scholar
  12. 12.
    J.C. Zolper, R.J. Shul, A.G. Baca, R.G. Wilson, S.J. Pearton, and R.A. Stall. Appl. Phys. Lett. 68, 2273 (1996).CrossRefGoogle Scholar
  13. 13.
    C.T. Lee, M.Y. Yeh, C.D. Tsai, and Y.T. Lyu, J. Electron. Mater. 26, 262 (1997).CrossRefGoogle Scholar
  14. 14.
    D.K. Schroder, Semiconductor Material and Device Characterization (New York: John Wiley & Sons 1990).Google Scholar
  15. 15.
    J.S. Chan, N.W. Cheung, L. Schloss, E. Jones, W.S. Wong, N. Newman, X. Liu, E.R. Weber, A. Gassman, and M.D. Rubin, Appl. Phys. Lett. 68, 2702 (1996).CrossRefGoogle Scholar
  16. 16.
    C.T. Lee and H.W. Kao, Appl. Phys. Lett. 76, 2364 (2000).CrossRefGoogle Scholar
  17. 17.
    Z. Fan, S.N. Mohammad, W. Kim, O. Aktas, A.E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 68, 1672 (1996).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2001

Authors and Affiliations

  • Ching-Tingh Lee
    • 1
  • Hsiao-Wei Kao
    • 1
  • Fu-Tasi Hwang
    • 1
  1. 1.Institute of Optical SciencesNational Central UniversityChung-LiTaiwan

Personalised recommendations