Advertisement

Journal of Electronic Materials

, Volume 30, Issue 7, pp 802–806 | Cite as

Kinetics of strain relaxation in semiconductor films grown on borosilicate glass-bonded substrates

  • P. D. Moran
  • T. F. Kuech
Special Issue Paper

Abstract

Changes in the strain relaxation of semiconductor films due to growth on a thin epitaxial template bonded via a borosilicate glass to a mechanical handle wafer have been observed. Akinetic analysis of the mechanical decoupling between the film/template heterostructure and the handle wafer is developed in order to estimate and evaluate the contribution of glass viscous deformation to the observed strain relaxation. The thickness and elastic constants of the template and film, the thickness and viscosity of the bonding media, and the lateral dimension of the bonded structure are included in this model. Based on this model, the viscous flow of the glass is unlikely to have played a role in previous observations of changes in film strain relaxation due to growth on glass-bonded substrates. The calculations are used in conjunction with simple expressions for the temperature and composition dependence of borosilicate glass viscosity to result in design guidelines for substrate structures and annealing schedules in which the viscous flow of a borosilicate glass will contribute to the strain relaxation of a lattice-mismatched film.

Key words

Compliant substrate viscous flow glass relaxation wafer bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.D. Moran, D.M. Hansen, R.J. Matyi, J.G. Cederberg, L.J. Mawst, and T.F. Kuech, Appl. Phys. Lett. 75, 1559 (1999).CrossRefGoogle Scholar
  2. 2.
    A.R. Powell, S.S. Iyer, and F.K. LeGoues, Appl. Phys. Lett. 64, 1856 (1994).CrossRefGoogle Scholar
  3. 3.
    M.A. Chu, M.O. Tanner, F.Y. Huang, K.L. Wang, G.G. Chu, and M.S. Goorsky, J. Cryst. Growth 175, 1278 (1997).CrossRefGoogle Scholar
  4. 4.
    Z. Yang, J. Alperin, W.I. Wang, S.S. Iyer, T.S. Kuan, and F. Semendy, J. Vac. Sci. Technol. B 16, 1489 (1998).CrossRefGoogle Scholar
  5. 5.
    J.W. Matthews, S. Mader, and T.B. Light, J. Appl. Phys. 41, 3800 (1970).CrossRefGoogle Scholar
  6. 6.
    Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991).CrossRefGoogle Scholar
  7. 7.
    P.D. Moran, D.M. Hansen, R.J. Matyi, L.J. Mawst, and T.F. Kuech, Appl. Phys. Lett. 76, 2541 (2000).CrossRefGoogle Scholar
  8. 8.
    S. Rekhson, Glass Science and Technology, vol. 13, ed. D.R. Uhlmann and N.J. Kreidl, (New York: Academic Press, 1986), p. 13.Google Scholar
  9. 9.
    L.B. Freund and W.D. Nix, private communication.Google Scholar
  10. 10.
    H. Scholze and N.J. Kreidl, Glass Science and Technology, vol. 3, ed. D.R. Uhlmann and N.J. Kreidl (New York: Academic Press, 1986), p. 247.Google Scholar
  11. 11.
    G. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar
  12. 12.
    R. Brueckner, J. Non-Cryst. Solids 5, 123 (1970).CrossRefGoogle Scholar
  13. 13.
    J.A. Kerr and A.F. Trotman-Dickenson, CRC Handbook of Chemistry and Physics, 52nd edition, ed. R.C. Weast, (Boca Raton, FL: CRC Press, 1972), p. F177.Google Scholar
  14. 14.
    S.L. Antonova and V.V. Dyakova, Handbook of Glass Data, Part A, ed. O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaya (Amsterdam: Elsevier, 1983), p. 562.Google Scholar
  15. 15.
    R. Bruckner and J.M.F. Navarro, Handbook of Glass Data, Part A, ed. O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaya (Amsterdam: Elsevier, 1983), p. 557.Google Scholar
  16. 16.
    P.M. Mooney and J.O. Chu, Annual Rev. of Mater. Sci. 30, 335 (2000) and references within.CrossRefGoogle Scholar
  17. 17.
    E.M. Rehder, D.E. Savage, P.D. Moran, M.G. Lagally, and T.F. Kuech (Paper presented at the 42nd Electron. Mater. Conf. held at the University of Denver, Denver, CO, 21–23 June 2000).Google Scholar
  18. 18.
    H.J. McSkimin and P. Andreatch, Jr., Semiconductors-Basic Data 2nd Edition, ed. O. Madelung, (Berlin: Springer-Verlag, 1996), p. 18.Google Scholar
  19. 19.
    K.D. Hobart, F.J. Kub, M. Fatemi, M.E. Twigg, P.E. Thompson, T.S. Kuan, and C.K. Inoki, J. Electron. Mater. 29, 897 (2000).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2001

Authors and Affiliations

  • P. D. Moran
    • 1
  • T. F. Kuech
    • 1
  1. 1.Chemical Engineering DepartmentUniversity of Wisconsin-MadisonMadison

Personalised recommendations