Journal of Electronic Materials

, Volume 29, Issue 7, pp 950–955 | Cite as

Low-dislocation relaxed SiGe grown on an effective compliant substrate

  • Y. H. Luo
  • J. L. Liu
  • G. Jin
  • K. L. Wang
  • C. D. Moore
  • M. S. Goorsky
  • C. Chih
  • K. N. Tu
Special Issue Paper


An effective compliant substrate was successfully fabricated for growth of high quality relaxed SiGe templates. The compliant substrate was fabricated by synthesizing a 20% B2O3 concentration borosilicate glass in the silicon on insulator wafers through boron and oxygen implantation followed by high temperature annealing. Substrates with 5%, 10% and 20% B2O3 were used for 150 nm Si0.75Ge0.25 epitaxy. Double-axis x-ray diffraction measurements determined the relaxation and composition of the Si1−xGex layers. Cross-sectional transmission electron microscopy was used to observe the lattice of the SiGe epilayer and the Si substrate, dislocation density and distribution. Raman spectros-copy was combined with step etching to measure the samples. For 20% BSG sample, the strain in the thin Si layer was calculated from the Raman shift and it matched the results from DAXRD very well. The density of threading dislocation on the surface of 500 nm Si0.75Ge0.25 layers was 2×104 cm−2 for the sample on the 20% borosilicate glass substrate. This method is promising to prepare effective compliant substrate for low-dislocation relaxed SiGe growth.

Key words

Compliant substrate relaxed SiGe MBE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ismail, F.K. LeGoues, K.L. Saenger, M. Arafa, J.O. Chu, P.M. Mooney, and B.S. Meyerson, Phys. Rev. Lett. 73, 3447 (1994).CrossRefGoogle Scholar
  2. 2.
    Y.H. Xie, D. Monroe, E.A. Fitzgerald, P.J. Silverman, F.A. Theil, and G.P. Watson, Appl. Phys. Lett. 63, 2263 (1993).CrossRefGoogle Scholar
  3. 3.
    Y.J. Mii, Y.H. Xie, E.A. Fitzgerald, D. Monroe, F.A. Thiel, B.E. Weir, and L.C. Feldman, Appl. Phys. Lett. 59, 1611 (1991).CrossRefGoogle Scholar
  4. 4.
    W.S. Wang and I.B. Bhat, J. Electron Mater. 24, 1047 (1995).Google Scholar
  5. 5.
    R. Hull, J.C. Bean, and C. Buescher, J. Appl. Phys. 66, 5837 (1989).CrossRefGoogle Scholar
  6. 6.
    L.B. Freund, J. Appl. Phys. 68, 2073 (1990).CrossRefGoogle Scholar
  7. 7.
    P. Kvan and F. Namavar, Appl. Phys. Lett. 58, 2357 (1991).CrossRefGoogle Scholar
  8. 8.
    C.S. Peng, Z.Y. Zhao, H. Chen, J.H. Li, Y.K. Li, L.W. Guo, D.Y. Dai, Q. Huang, J.M. Zhou, Y.H. Zhang, T.T. Sheng, and C.H. Tung, Appl. Phys. Lett. 72, 3160 (1998).CrossRefGoogle Scholar
  9. 9.
    Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991).CrossRefGoogle Scholar
  10. 10.
    A. Powell, F.K. Legeous, and S.S. Iyer, Appl. Phys. Lett. 64, 324 (1994).CrossRefGoogle Scholar
  11. 11.
    F.E. Ejeckam, Y.H. Lo, S. Subramanian, H.Q. Hou, and B.E. Hammons, Appl. Phys. Lett. 70, 1685 (1997).CrossRefGoogle Scholar
  12. 12.
    C. Carter-Coman, A.S. Brown, A. Metzger, N.M. Jokerst, J. Pickering, and L. Bottomley, Appl. Phys. Lett. 71, 1344 (1997).CrossRefGoogle Scholar
  13. 13.
    M.A. Chu, M.O. Tanner, F.Y. Huang, K.L. Wang, G.G. Chu, and M.S. Goorsky, J. Cryst. Growth 175/176, 1278 (1997).CrossRefGoogle Scholar
  14. 14.
    J. Cao, D. Pavlidis, Y. Park, J. Singh, and A. Eisenbach, J. Appl. Phys. 83, 3829 (1998).CrossRefGoogle Scholar
  15. 15.
    Z. Yang, J. Alperin, W.I. Wang, and S.S. Iyer, T.S. Kuan, and F. Semendy, J. Vac. Sci. Technol. B 16, 1489 (1998).CrossRefGoogle Scholar
  16. 16.
    O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Amsterdam: Elsevier, 1983), p. 563.Google Scholar
  17. 17.
    M.A. Chu and K.L. Wang (unpublished data).Google Scholar
  18. 18.
    H. Ryssel and I. Ruge, Ion Implantation (New York: John Wiley & Sons, 1986), p. 383.Google Scholar
  19. 19.
    J.C. Tsang, P.M. Mooney, F. Dacol, and J.O. Chu, J. Appl. Phys. 75, 8098 (1994).CrossRefGoogle Scholar
  20. 20.
    C.W. Liu, J.C. Sturm, Y.R.J. Lacroix, M.L.W. Thewalt, and D.D. Perovic, Appl. Phys. Lett. 65, 76 (1994).CrossRefGoogle Scholar
  21. 21.
    F.Y. Huang and K.L. Wang, Phil. Mag. Lett. 72, 231 (1995).Google Scholar
  22. 22.
    Y.A. Burenkov and S.P. Nikanorov, Sov. Phys. Solid State 16, 963 (1974).Google Scholar
  23. 23.
    D. Schimmel, J. Electrochem. Soc. 126, 479 (1979).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • Y. H. Luo
    • 1
  • J. L. Liu
    • 1
  • G. Jin
    • 1
  • K. L. Wang
    • 1
  • C. D. Moore
    • 2
  • M. S. Goorsky
    • 2
  • C. Chih
    • 2
  • K. N. Tu
    • 2
  1. 1.Department of Electrical EngineeringUniversity of California, Device Research LaboratoryLos Angeles
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos Angeles

Personalised recommendations