Advertisement

Journal of Electronic Materials

, Volume 29, Issue 7, pp 897–900 | Cite as

Compliant substrates: A comparative study of the relaxation mechanisms of strained films bonded to high and low viscosity oxides

  • K. D. Hobart
  • F. J. Kub
  • M. Fatemi
  • M. E. Twigg
  • P. E. Thompson
  • T. S. Kuan
  • C. K. Inoki
Special Issue Paper

Abstract

Relaxation of compressively strained heteroepitaxial Si0.7Ge0.3 films bonded to high and low viscosity glass compliant layers was investigated. These structures were formed by transferring Si0.7Ge0.3 films to Si substrates covered with thermal SiO2 and borophosphorosilicate glass (BPSG) films. Relaxation was studied through thermal annealing experiments. For the low viscosity BPSG, relaxation was observed near 800°C and was accompanied by buckling of the Si0.7Ge0.3 film. At this temperature, no change in the Si0.7Ge0.3 film bonded to thermal SiO2 was observed, and through this comparison relaxation on BPSG is interpreted as the result of viscous flow of the glass. Finally, film buckling was successfully avoided by patterning the strained films into small areas prior to annealing, and is an indication that film expansion must be considered for elastic strain relaxation on compliant media.

Key words

SiGe heteroepitaxy compliant substrate viscous flow strain relaxation SOI substrates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.R. Powell, S.S. Iyer, and F.K. LeGoues, Appl. Phys. Lett. 64, 1856 (1994).CrossRefGoogle Scholar
  2. 2.
    Z. Yang, J. Alperin, W.I. Wang, S.S. Iyer, T.S. Kuan, and F. Semendy, J. Vac. Sci. Technol. B 16, 1489 (1998).CrossRefGoogle Scholar
  3. 3.
    M.O. Tanner, M.A. Chu, K.L. Wang, M. Meshkinpour, and M.S. Goorsky, J. Cryst. Growth 157, 121 (1995).CrossRefGoogle Scholar
  4. 4.
    F.E. Ejeckam, M.L. Seaford, Y.-H. Lo, H.Q. Hou, and B.E. Hammons, Appl. Phys. Lett. 71, 776 (1997).CrossRefGoogle Scholar
  5. 5.
    F.E. Ejeckam, Y.-H. Lo, S. Subramanian, H.Q. Hou, and B.E. Hammons, Appl. Phys. Lett. 70, 1685 (1997).CrossRefGoogle Scholar
  6. 6.
    A.M. Jones, J.L. Jewell, J.C. Mabon, E.E. Reuter, S.G. Bishop, S.D. Roh, and J.J. Coleman, Appl. Phys. Lett. 74, 1000 (1999).CrossRefGoogle Scholar
  7. 7.
    Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991).CrossRefGoogle Scholar
  8. 8.
    M.L. Seaford, P.J. Hesse, D.H. Tomich, and K.G. Eyink, J. Electron. Mater. 28, 878 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Bruel, Electron. Lett. 37, 1201 (1995).CrossRefGoogle Scholar
  10. 10.
    D. Godbey, H. Hughes, F. Kub, M. Twigg, L. Palkuty, P. Leonov, and J. Wang, Appl. Phys. Lett. 56, 373 (1990).CrossRefGoogle Scholar
  11. 11.
    K.D. Hobart, F.J. Kub, G.G. Jernigan, M.E. Twigg, and P.E. Thompson, Electron. Lett. 34, 1265 (1998).CrossRefGoogle Scholar
  12. 12.
    K. Nassau, R.A. Levy, and D.L. Chadwick, J. Electrochem. Soc. 132, 409 (1985).CrossRefGoogle Scholar
  13. 13.
    W. Kern and G.L. Schnable, RCA Review 43, 423 (1982).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • K. D. Hobart
    • 1
  • F. J. Kub
    • 1
  • M. Fatemi
    • 1
  • M. E. Twigg
    • 1
  • P. E. Thompson
    • 1
  • T. S. Kuan
    • 2
  • C. K. Inoki
    • 2
  1. 1.Naval Research LaboratoryWashington, DC
  2. 2.SUNY AlbanyAlbany

Personalised recommendations