Advertisement

Journal of Electronic Materials

, Volume 29, Issue 4, pp 426–429 | Cite as

Oxygen-related deep levels in Al0.5In0.5P grown by MOVPE

  • J. G. Cederberg
  • B. Bieg
  • J. -W. Huang
  • S. A. Stockman
  • M. J. Peanasky
  • T. F. Kuech
Regular Issue Paper

Abstract

Oxygen related defects in Al-containing materials have been determined to degrade luminescence efficiency and reduce carrier lifetime and affect the performance of light emitting diodes and laser diodes utilizing these materials. We have used the;metal-organic source diethylaluminum ethoxide (DEAlO) to intentionally incorporate oxygen-related defects during growth of Al0.5In0.5P by metal-organic vapor phase epitaxy (MOVPE). The incorporated oxygen forms several energy levels in the bandgap with energies of 0.62 eV to 0.89 eV below the conduction band detected using deep level transient spectroscopy. Secondary ion mass spectroscopy measurements of the total oxygen concentration in the layers shows a direct correlation to the measured trap concentrations. Several other energy levels are detected that are not correlated with the oxygen content of the film. The possible origin of these additional levels is discussed.

Key words

Oxygen defects metal-organic vapor phase epitaxy deep level transient spectroscopy deep levels AlInP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.P. Bour, Quantum Well Lasers, edited by P.S. Zory, Jr. (Boston, MA: Academic Press, 1993), p. 415.Google Scholar
  2. 2.
    F.A. Kish, F.M. Steranka, D.C. Defevere, D.A. Vanderwater, K.G. Park, C.P. Kuo, T.D. Osentowski, M.T. Peanasky, J.G. Yu, R.M. Fletcher, D.A. Steigerwald, M.G. Craford, and V.M. Robbins, Appl. Phys. Lett. 64, 2839 (1994).CrossRefGoogle Scholar
  3. 3.
    T.F. Kuech, R. Potemski, F. Cardone, and G. Scilla, J. Electron. Mater. 21, 341 (1992).Google Scholar
  4. 4.
    M. Skowronski, Deep Centers in Semiconductors: A State-of-the-Art Approach, 2nd. ed., ed. S.T. Pantelides, (Philadelphia, PA: Gordon and Breach Science, 1992), p. 401.Google Scholar
  5. 5.
    J.W. Huang, D.F. Gaines, T.F. Kuech, R.M. Potemski, and F. Cardone, J. Electron. Mater. 23, 659 (1994).Google Scholar
  6. 6.
    J.W. Huang, J.M. Ryan, K.L. Bray, and T.F. Kuech, J. Electron. Mater. 24, 1539 (1995).Google Scholar
  7. 7.
    J.G. Cederberg, K.L. Bray, and T.F. Kuech, J. Appl. Phys. 82, 2263 (1997).CrossRefGoogle Scholar
  8. 8.
    S.A. Stockman, J.-W. Huang, T.D. Osentowski, H.C. Chui, M.T. Peanasky, S.A. Maranowski, P.N. Grillot, A.T. Moll, C.H. Chen, C.P. Kuo, and B.W. Liang, J. Electron. Mater. 28, 916 (1999).CrossRefGoogle Scholar
  9. 9.
    D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley, 1998), p. 97.Google Scholar
  10. 10.
    D. Stievenard and D. Vuilaume, J. Appl. Phys. 60, 973 (1986).CrossRefGoogle Scholar
  11. 11.
    M. Suzuki, K. Itaya, Y. Nishikawa, H. Sugawara, and M. Okajima, J. Cryst. Growth 133, 303 (1993).CrossRefGoogle Scholar
  12. 12.
    J.C. Chen, Z.C. Huang, K.J. Lee, and R. Kanjolia, J. Electron. Mater. 26, 361 (1997).Google Scholar
  13. 13.
    Y. Nishiakawa, M. Suzuki, and M. Okajima, Jpn. J. Appl. Phys. 32, 498 (1993).CrossRefGoogle Scholar
  14. 14.
    K.A. Bertness, S.R. Kurtz, and S.E. Asher, R.C. Reedy, Jr., J. Cryst. Growth 196, 13 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Kondo, N. Okada, K. Domen, K. Sugiura, C. Anayarna, and T. Tanahashi, J. Electron. Mater. 23, 355 (1994).Google Scholar
  16. 16.
    J.W. Huang and T.F. Kuech, Appl. Phys. Lett. 65, 604 (1994).CrossRefGoogle Scholar
  17. 17.
    J.W. Huang, T.F. Kuech, and T.J. Anderson, Appl. Phys. Lett. 67, 1116 (1995).CrossRefGoogle Scholar
  18. 18.
    M. Suzuki, M. Ishikawa, K. Itaya, Y. Nishikawa, G. Hatakoshi, and Y. Kokubun, J. Cryst. Growth 115, 498 (1991).CrossRefGoogle Scholar
  19. 19.
    M.O. Watanabe and Y. Ohba, J. Appl. Phys. 60, 1032 (1986).CrossRefGoogle Scholar
  20. 20.
    K.-J. Lee, H.K. Chen, and J.C. Chen, J. Appl. Phys. 82, 1350 (1997).CrossRefGoogle Scholar
  21. 21.
    P.M. Mooney, J. Appl. Phys. 67, R1 (1990).Google Scholar
  22. 22.
    Q.S. Zhu, K. Hiramatsu, N. Sawaki, I. Akasaki, and X.N. Liu, J. Appl. Phys. 73, 771 (1993).CrossRefGoogle Scholar
  23. 23.
    J. Yoshino, M. Tachikawa, N. Matsuda, M. Mizuta, and H. Kukimoto, Jpn. J. Appl. Phys. 23, L29 (1984).Google Scholar
  24. 24.
    Y.-R. Wu, W.J. Sung, and W.I. Lee, Appl. Phys. Lett. 74, 284 (1999).CrossRefGoogle Scholar
  25. 25.
    S.F. Yoon, P.Y. Lui, and H.Q. Zheng, J. Cryst. Growth 203, 31 (1999).CrossRefGoogle Scholar
  26. 26.
    B. Bieg, J.G. Cederberg, and T.F. Kuech, unpublished.Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • J. G. Cederberg
    • 1
  • B. Bieg
    • 1
  • J. -W. Huang
    • 2
  • S. A. Stockman
    • 3
  • M. J. Peanasky
    • 3
  • T. F. Kuech
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Wisconsin at MadisonMadisonUSA
  2. 2.Hewlett-Packard CompanyOptoelectronics DivisionSan Jose
  3. 3.Szczecin Maritime University, Waly Cherobrego_SzczecinPoland

Personalised recommendations