Advertisement

Journal of Electronic Materials

, Volume 29, Issue 2, pp 183–187 | Cite as

Effects of surface porosity on tungsten trioxide(WO3) films’ electrochromic performance

  • W. J. Lee
  • Y. K. Fang
  • Jyh-Jier Ho
  • W. T. Hsieh
  • S. F. Ting
  • Daoyang Huang
  • Fang C. Ho
Regular Issue Paper

Abstract

In this paper, the correlation between the electrochromic performance and the surface morphology of the tungsten trioxide (WO3) thin films sputtered by dc reactive magnetron sputtering with widely varying target-substrate distances was investigated. It is found that the optical density change (ΔOD) of films is strongly affected by the target-substrate distance. The coloration efficiency (CE) at 633 nm was also found to be sensitive to the target-substrate distance, with 16 cm2/C of film sputtered at 6 cm and 50 cm2/C at 18 cm. X-ray diffraction showed that the crystal structure of films was amorphous. By using atomic force microscope to identify the surface porosity of the sputtered WO3 films, we found that the film at longer target-substrate distance was rough, porous, and having a cone-shaped columns morphology, thus offering a good electrochromic performance for opto-switching applications.

Key words

Tungsten trioxide optical density change coloration efficiency electrochromic performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Arakaki, R. Reyes, M. Horn, and W. Estrada, Solar Energy Materials and Solar Cells 37, 33 (1995).CrossRefGoogle Scholar
  2. 2.
    C.G. Granqvist, Solar Energy Materials and Solar Cells 32, 369 (1994).CrossRefGoogle Scholar
  3. 3.
    Klaus Bange and Thomas Gambke, Advanced Materials 2, 10 (1990).CrossRefGoogle Scholar
  4. 4.
    R.B. Goldner, F.O. Arntz, G. Berera, T.E. Haas, G. Wei, K.K. Wong, and P.C. Yu, Solid State Ionics 53–56, 617 (1992).CrossRefGoogle Scholar
  5. 5.
    R.B. Goldner, J. Vac. Sci. Technol. A13(3), 1088 (1995).Google Scholar
  6. 6.
    T.C. Arnoldussen, J. Electrochem. Soc. 128, 117 (1981).CrossRefGoogle Scholar
  7. 7.
    I.F. Chang and W.E. Howard, IEEE Trans. Electron Devices ED-22, 749 (1975).Google Scholar
  8. 8.
    H. Kaneko, K. Miyake, and Y. Teramoto, J. Appl. Phys. 53, 4416 (1982).CrossRefGoogle Scholar
  9. 9.
    M. Nabavi, S. Doeuff, C. Sanchez, and J. Livaze, Mater. Sci. Eng.. B3, 203 (1989).CrossRefGoogle Scholar
  10. 10.
    J.S.E.M. Svensson and C.G. Granqvist, Proc. SPIE 502, 30 (1984).Google Scholar
  11. 11.
    R.B. Goldner and R.D. Rauh, Proc. SPIE 428, 38 (1983).Google Scholar
  12. 12.
    R.B. Goldner, T.E. Haas, F.O. Arntz, S. Slaven, K.K. Wong, B. Wilkens, C. Shepard, and W. Lanford, Appl. Phys. Lett. 62, 1699 (1993).CrossRefGoogle Scholar
  13. 13.
    P.V. Ashrit, K. Benaissa, G. Bader, F.E. Girouard, and Vo-Van Truong, Solid State Ionics 59, 47 (1993).CrossRefGoogle Scholar
  14. 14.
    H.S. Witham, P. Chindaudom, I. An, R.W. Collins, R. Messier, and K. Vedam, J. Vac. Sci. Technol. A11, 1881 (1993).Google Scholar
  15. 15.
    lorganic File, Plate 18–1418 (Mineral Power Diffraction File, 1986).Google Scholar
  16. 16.
    A.P. Giri and R. Messier, Mater. Res. Soc. Symp. Proc. 24, 221 (1984).Google Scholar
  17. 17.
    J. Nagai, T. Kamimori, and M. Mizuhashi, Proc. SPIE 502, 59 (1984).Google Scholar
  18. 18.
    D.K. Benson and C.E. Tracy, Proc. SPIE 562, 46 (1985).Google Scholar
  19. 19.
    W.C. Dautremount-Smith, Displays 3, 3 (1982); 3, 67 (1982).CrossRefGoogle Scholar
  20. 20.
    S.A. Agnihotri, K.K. Saini, and S. Chandra, Ind. J. Pure Appl. Phys. 24, 19 (1986); 24, 34 (1986).Google Scholar
  21. 21.
    K. Yamanaka, Jpn. J. Appl. Phys. 25, 1073 (1982).CrossRefGoogle Scholar
  22. 22.
    R.C. Ross, A.G. Johncock, and A.R. Chan, J. Non-Cryst. Solids 66, 81 (1984).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • W. J. Lee
    • 1
  • Y. K. Fang
    • 1
  • Jyh-Jier Ho
    • 2
  • W. T. Hsieh
    • 1
  • S. F. Ting
    • 1
  • Daoyang Huang
    • 3
  • Fang C. Ho
    • 3
  1. 1.VLSI Technology Laboratory, Dept. of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan 70100, ROC
  2. 2.Dept. of Electronics Eng.Fortune Institute of Technology, Chi-shan TownKaohsiungTaiwan 84200, ROC
  3. 3.Industrial Tech. Research InstituteOpto-Electronics & Systems Lab., Q100ChutungTaiwan 31015, ROC

Personalised recommendations