Advertisement

Journal of Electronic Materials

, Volume 29, Issue 11, pp 1312–1318 | Cite as

Mechanistic study of borosilicate glass growth by low-pressure chemical vapor deposition from tetraethylorthosilicate and trimethylborate

  • D. M. Hansen
  • D. Charters
  • Y. L. Au
  • W. K. Mak
  • W. Tejasukmana
  • P. D. Moran
  • T. F. Kuech
Regular Issue Paper

Abstract

A reaction mechanism and film morphology as a function of reactor conditions and post growth thermal annealing for borosilicate glass (BSG), (SiO2)x(B2O3)1−x, films deposited from tetraethylorthosilicate (TEOS), trimethylborate (TMB), and oxygen (O2) precursors by low-pressure chemical vapor deposition (LPCVD) was determined. An empirically derived reaction model for BSG film growth is proposed that predicts the growth rate and composition of BSG films up to 70 mole% B2O3. The BSG reaction model includes a strongly adsorbed TEOS-derived intermediate that forms SiO2 and a direct surface reaction of TMB, in O2, to form B2O3. This model is supported by growth rate and mass spectroscopic data. The BSG film morphology, investigated using atomic force microscopy, was found to have a root-mean-square roughness of 0.5 nm, with the precise film morphology being a function of reactor conditions. The BSG film roughness increases with film thickness, temperature, and boron content. Thermal annealing of the films in a water-free environment leads to planarization of the BSG governed by the film composition and anneal temperature.

Key words

Borosilicate glass chemical vapor deposition reaction mechanism wafer bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.S. Becker, D. Pawlik, H. Schafer, and G. Staudigl, J. Vac. Sci Technol. B 4, 732 (1986).CrossRefGoogle Scholar
  2. 2.
    F.S. Becker and S. Rohl, J. Electrochem. Soc. 134, 2923 (1987).CrossRefGoogle Scholar
  3. 3.
    D.S. Williams and E.A. Dein, J. Electrochem. Soc. 134, 657 (1987).CrossRefGoogle Scholar
  4. 4.
    P. Eppenga, E. Schuivens, and M. Hendriks, J. de Physique C5, 575 (1989).Google Scholar
  5. 5.
    Handbook of Glass Properties, ed. N.P. Bansal and R.H. Doremus (New York: Academic Press, 1986).Google Scholar
  6. 6.
    E.A. Taft, J. Electrochem. Soc. 118, 1985 (1971).CrossRefGoogle Scholar
  7. 7.
    A.R. Barron, Adv. Mat. for Optics and Electron. 6, 101 (1996).CrossRefGoogle Scholar
  8. 8.
    S.B. Desu, J. Am. Ceram. Soc. 72, 1615 (1989).CrossRefGoogle Scholar
  9. 9.
    S.R. Kalidindi and S.B. Desu, J. Electrochem. Soc. 137, 624 (1990).CrossRefGoogle Scholar
  10. 10.
    E.A. Haupfear, E.C. Olson, and L.D. Schmidt, J. Electrochem. Soc. 141, 1943 (1994).CrossRefGoogle Scholar
  11. 11.
    J. Tiren, K.E. Bohlin, and G. Alestig, Semiconductor Wafer Bonding: Science, Technology and Application, ed. U. Gosele, T. Abe, J. Haisma, and M. Schmidt (Pennington, NJ: Electrochem. Soc., 1992), p. 153.Google Scholar
  12. 12.
    D.M. Hansen, P.D. Moran, K.A. Dunn, S.E. Babcock, R.J. Matyi, and T.F. Kuech, J. Cryst. Growth 195, 144 (1998).CrossRefGoogle Scholar
  13. 13.
    M.A. Chu, M.O. Tanner, F. Huang, K.L. Wang, G.G. Chu, and M.S. Goorsky, J. Cryst. Growth 175/176, 1278 (1997).CrossRefGoogle Scholar
  14. 14.
    E. Bartram and H.K. Moffat, J. Vac. Sci. Technol. A 12, 1027 (1994).CrossRefGoogle Scholar
  15. 15.
    Q.Y. Tong and U. Gosele, J. Electrochem. Soc. 143, 1773 (1996).CrossRefGoogle Scholar
  16. 16.
    U. Gosele and Q.Y. Tong, Annual Rev. Mater. Sci. 28, 215 (1998).CrossRefGoogle Scholar
  17. 17.
    J.C. Brice, Properties of GaAs, (New York: INSPEC, 1986), p. 1.7.Google Scholar
  18. 18.
    M.M. IslamRaja, C. Chang, J.P. McViie, M.A. Cappelli, and K.C. Saraswat, J. Vac. Technol. B 11, 720 (1993).CrossRefGoogle Scholar
  19. 19.
    T. Sorita, S. Shiga, K. Ikuta, Y. Egashira, and H. Komiyama, J. Electrochem. Soc. 140, 2952 (1993).CrossRefGoogle Scholar
  20. 20.
    S.R. Heller and G.W.A. Milne, EPA/NIH Mass Spectral Database (Washington D.C.: U.S. Department of Commerce, National Bureau of Standard, 1980).Google Scholar
  21. 21.
    J.W. Huang, D.F. Gaines, T.F. Kuech, R.M. Potemski, and F. Cardone, J. Electron. Mater. 23, 659 (1994).Google Scholar
  22. 22.
    A.A. Chernov, Thin Films and Epitaxy: Growth Mechanisms and Dynamics, ed. D.T.J. Hurle (New York: Elsevier Science Publishers, 1994), p. 457.Google Scholar
  23. 23.
    A.-L. Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth (New York: Cambridge University Press, 1995).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • D. M. Hansen
    • 1
  • D. Charters
    • 1
  • Y. L. Au
    • 1
  • W. K. Mak
    • 1
  • W. Tejasukmana
    • 1
  • P. D. Moran
    • 1
  • T. F. Kuech
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadison

Personalised recommendations