Self-assembled metal/molecule/semiconductor nanostructures for electronic device and contact applications

  • D. B. Janes
  • Takhee Lee
  • Jia Liu
  • M. Batistuta
  • Nien-Po Chen
  • B. L. Walsh
  • R. P. Andres
  • E. -H. Chen
  • M. R. Melloch
  • J. M. Woodall
  • R. Reifenberger
Special Issue Paper
  • 82 Downloads

Abstract

We report a fabrication approach in which we combine self-assembled metal/molecule nanostructures with chemically stable semiconductor surface layers. The resulting structures have well controlled dimensions and geometries (∼4 nm Au nanoclusters) provided by the chemical self-assembly and have stable, low-resistance interfaces realized by the chemically stable semiconductor cap layer (low-temperature grown GaAs passivated by the organic tether molecules). Scanning tunneling microscope imaging and current-voltage spectroscopy of nanocontacts ton-GaAs fabricated using this approach indicate high quality, ohmic nanocontacts having a specific contact resistance of ∼1 × 10−7Ω·cm2 and a maximum current density of ∼1×107 A/cm2, both comparable to those observed in large area contacts. Uniform 2-D arrays of these nanocontact structures have been fabricated and characterized as potential cells for nanoelectronic device applications.

Key words

Self-assembly nanocluster ohmic contact GaAs STM 

References

  1. 1.
    D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).CrossRefGoogle Scholar
  2. 2.
    P.C. Sharma, K.W. Alt, D.Y. Yeh, D. Wang, and K.L. Wang, J. Electron. Mater. 28, 432 (1999).Google Scholar
  3. 3.
    S. Bandyopadhyay, L. Menon, N. Kouklin, H. Zbeng, and D.J. Sellmyer, J. Electron. Mater. 28, 515 (1999).Google Scholar
  4. 4.
    R.P. Andres, J.D. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney, and R.G. Osifchin, Science 273, 1690 (1996).CrossRefGoogle Scholar
  5. 5.
    C.B. Murray, C.R. Kagan, and M.G. Bawendi, Science 270, 1335 (1995).CrossRefGoogle Scholar
  6. 6.
    S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H.L. Hartnagel, Science 285, 1551 (1999).CrossRefGoogle Scholar
  7. 7.
    L.C. Brousseau, III, J.P. Novak, S.M. Marinakos, and D.L. Feldheim, Adv. Mater. 11, 447 (1999).CrossRefGoogle Scholar
  8. 8.
    R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, and R. Reifenberger, Science 272, 1323 (1996).CrossRefGoogle Scholar
  9. 9.
    T. Lee, J. Liu, D.B. Janes, V.R. Kolagunta, J. Dicke, R.P. Andres, J. Lauterbach, M.R. Melloch, D. McInturff, J.M. Woodall, and R. Reifenberger, Appl. Phys. Lett. 74, 2869 (1999).CrossRefGoogle Scholar
  10. 10.
    J. Liu, T. Lee, B.L. Walsh, R.P. Andres, D.B. Janes, M.R. Melloch, J.M. Woodall, and R. Reifenberger, in progress.Google Scholar
  11. 11.
    R.S. Bowles, J.J. Kolstad, J.M. Calo, and R.P. Andres, Surf. Sci. 106, 117 (1981).CrossRefGoogle Scholar
  12. 12.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R. Whyman, J. Chem. Soc. Chem. Commun. 1994, 801 (1994).CrossRefGoogle Scholar
  13. 13.
    D.A. Handley, Colloidal Gold: Principles, Methods, and Applications, vol. 1, ed. M.A. Hayat (San Diego, CA: Academic Press, 1989), Chap. 2.Google Scholar
  14. 14.
    B.O. Dabboussi, C.B. Murray, M.F. Rubner, and M.G. Bawendi, Chem. Mater. 6, 216 (1994).CrossRefGoogle Scholar
  15. 15.
    J.R. Heath, C.M. Knobler, and D.V. Leff, J. Phys. Chem. B 101, 189 (1997).CrossRefGoogle Scholar
  16. 16.
    A. Ulman, editor, Thin Films: Self-Assembled Monolayers of Thiols, vol. 24 (San Diego, CA: Academic Press, 1998).Google Scholar
  17. 17.
    M.J. Lercel, M. Rooks, R.C. Tiberio, H.G. Craighead, C.W. Sheen, A.N. Parikh, and D.L. Allara, J. Vac. Sci. Technol. B 13, 1139 (1995); M.J. Lercel, H.G. Craighead, and D.L. Allara, Appl. Phys. Lett. 68, 1504 (1996).CrossRefGoogle Scholar
  18. 18.
    M.R. Melloch, J.M. Woodall, E.S. Harmon, N. Otsuka, F.H. Pollak, D.D. Nolte, R.M. Feenstra, and M.A. Lutz, Annl. Rev. Mater. Sci. 25, 547 (1995).CrossRefGoogle Scholar
  19. 19.
    S. Hong, D.B. Janes, D. McInturff, R. Reifenberger, and J.M. Woodall, Appl. Phys. Lett. 68, 2258 (1996).CrossRefGoogle Scholar
  20. 20.
    T.-B. Ng, D.B. Janes, D. McInturff, and J.M. Woodall, Appl. Phys. Lett. 69, 3551 (1996).CrossRefGoogle Scholar
  21. 21.
    A.G. Baca, F. Ren, J.C. Zopler, R.D. Briggs, and S.J. Pearton, Thin Solid Films 308–309, 599 (1997).CrossRefGoogle Scholar
  22. 22.
    M.P. Patkar, T.P. Chin, J.M. Woodall, M.S. Lundstrom, and M.R. Melloch, Appl. Phys. Lett. 66, 1412 (1995).CrossRefGoogle Scholar
  23. 23.
    O.S. Nakagawa, S. Ashok, C.W. Sheen, J. Martensson, and D.L. Allara, Jpn. J. Appl. Phys. (Part. 1) 30, 3759 (1991).CrossRefGoogle Scholar
  24. 24.
    S.R. Lunt, G.N. Ryba, P.G. Santangelo, and N.S. Lewis, J. Appl. Phys. 70, 7449 (1991).CrossRefGoogle Scholar
  25. 25.
    J.F. Dorsten, J.E. Maslar, and P.W. Bohn, Appl. Phys. Lett. 66, 1755 (1995).CrossRefGoogle Scholar
  26. 26.
    D.B. Janes et al., J. Vac. Sci. Technol. B 17, 1773 (1999).Google Scholar
  27. 27.
    T. Lee, N.-P. Chen, J. Liu, R.P. Andres, D.B. Janes, E.H. Chen, M.R. Melloch, J.M. Woodall, and R. Reifenberger, Appl. Phys. Lett. 76, 212 (2000).CrossRefGoogle Scholar
  28. 28.
    N.-P. Chen, H.J. Ueng, D.B. Janes, J.M. Woodall, and M.R. Melloch, J. Appl. Phys. (in press).Google Scholar
  29. 29.
    V.P. Roychowdhury, D.B. Janes, S. Bandyopadhyay, and X. Wang, IEEE Trans. Electron. Dev. 43, 1688 (1996).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • D. B. Janes
    • 1
  • Takhee Lee
    • 2
  • Jia Liu
    • 3
  • M. Batistuta
    • 1
  • Nien-Po Chen
    • 2
  • B. L. Walsh
    • 1
  • R. P. Andres
    • 3
  • E. -H. Chen
    • 1
    • 4
  • M. R. Melloch
    • 1
    • 4
  • J. M. Woodall
    • 1
    • 4
  • R. Reifenberger
    • 2
  1. 1.School of Electrical and Computer EngineeringPurdue UniversityW. Lafayette
  2. 2.Department of PhysicsPurdue UniversityW. Lafayette
  3. 3.School of Chemical EngineeringPurdue UniversityW. Lafayette
  4. 4.NSF MRSEC for Technology Enabling Heterostructure MaterialsPurdue UniversityW. Lafayette
  5. 5.Department of Electrical EngineeringYale UniversityNew Haven

Personalised recommendations