Journal of Electronic Materials

, Volume 29, Issue 5, pp 554–556 | Cite as

Study of phonons in self-organized multiple Ge quantum dots

  • J. L. Liu
  • G. Jin
  • Y. S. Tang
  • Y. H. Luo
  • Y. Lu
  • K. L. Wang
  • D. P. Yu
Special Issue Paper

Abstract

Raman scattering measurements were carried out in a self-organized multi-layered Ge quantum dot sample, which was grown using solid-source molecular-beam epitaxy, and consisted of 25 periods of 20-Å-high Ge quantum dots sandwiched by 20-nm Si spacers. The Ge-Ge optical phonon mode was found at 298.2 cm−1, which was tuned by the phonon confinement and strain effects. Acoustic phonons related to Ge quantum dots have also been demonstrated.

Key words

Phonons Ge quantum dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.S. Peng, Q. Huang, W.Q. Cheng, J.M. Zhou, Y.H. Zhang, T.T. Sheng, and C.H. Tung, Phys. Rev. B 57, 8805 (1998).CrossRefGoogle Scholar
  2. 2.
    E.S. Kim, N. Usami, and Y. Shiraki, Appl. Phys. Lett. 72, 1617 (1998).CrossRefGoogle Scholar
  3. 3.
    M. Goryll, L. Vescan, and H. Luth, Thin Solid Film 336, 244 (1998).CrossRefGoogle Scholar
  4. 4.
    P. Boucaud, V. Le Thanh, S. Sauvage, D. Debarre, and D. Bouchier, Appl. Phys. Lett. 74, 401 (1999).CrossRefGoogle Scholar
  5. 5.
    J.L. Liu, W.G. Wu, A. Balandin, G.L. Jin, and K.L. Wang, Appl. Phys. Lett. 74, 185 (1999).CrossRefGoogle Scholar
  6. 6.
    J.L. Liu, W.G. Wu, A. Balandin, G. Jin, Y.H. Luo, S.G. Thomas, Y. Lu, and K. L. Wang, Appl. Phys. Lett. 75, 1745 (1999).CrossRefGoogle Scholar
  7. 7.
    A. Balandin and K.L. Wang, Supperlatt. Microstruct. 25, 509 (1999).CrossRefGoogle Scholar
  8. 8.
    C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Nanotechnology 4, 19 (1993).CrossRefGoogle Scholar
  9. 9.
    G. Jin, J.L. Liu, S.G. Thomas, Y.H. Luo, K.L. Wang, and Bich-Yen Nguyen, Appl. Phys. Lett. 75, 2752 (1999).CrossRefGoogle Scholar
  10. 10.
    K.L. Wang, J.L. Liu, A. Balandin, and A. Khitun (unpublished).Google Scholar
  11. 11.
    For example: E. Mateeva, P. Sutter, J.C. Bean, and M.G. Lagally, Appl. Phys. Lett. 71, 3233 (1997); O. Kienzle, F. Ernst, M. Ruhle, O.G. Schmidt, and K. Eberl, Appl. Phys. Lett. 74, 269 (1999).CrossRefGoogle Scholar
  12. 12.
    J.L. Liu, Y.S. Tang, K.L. Wang, T. Radetic, and R. Gronsky, Appl. Phys. Lett. 74, 1863 (1999).CrossRefGoogle Scholar
  13. 13.
    P.M. Fouchet and J.H. Cambell, Cri. Rev. Solid State Mater. Sci. 14, S79 (1988).Google Scholar
  14. 14.
    J. Gonzalez-Hernandez, G.H. Azerbayejani, R. Tsu, and F.H. Pollak, Appl. Phys. Lett. 47, 1350 (1985).CrossRefGoogle Scholar
  15. 15.
    R. Schorer, G. Abstreiter, S. De Gironcoli, E. Molinari, H. Kibbel, and H. Presting, Phys. Rev. B 49, 5406 (1994).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • J. L. Liu
    • 1
  • G. Jin
    • 1
  • Y. S. Tang
    • 1
  • Y. H. Luo
    • 1
  • Y. Lu
    • 1
  • K. L. Wang
    • 1
  • D. P. Yu
    • 2
  1. 1.Department of Electrical EngineeringUniversity of California at Los Angeles, Device Research LaboratoryLos Angeles
  2. 2.Electron Microscopy LaboratoryPeking UniversityBeijingP.R. China

Personalised recommendations