Metallurgical and Materials Transactions B

, Volume 30, Issue 5, pp 933–944 | Cite as

Reactive infiltration of silicon melt through microporous amorphous carbon preforms

  • P. Sangsuwan
  • S. N. Tewari
  • J. E. Gatica
  • M. Singh
  • R. Dickerson
Article

Abstract

The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms has been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances is in qualitative agreement with the closed-form solution of capillarity-driven fluid flow through constant-cross-section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preform’s microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore-closing phenomenon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.L. Mehan: J. Am. Ceram. Soc., 1977, vol. 60 (3–4), pp. 177–78.Google Scholar
  2. 2.
    Y.M. Chiang, R.P. Messner, C.D. Terwilliger, and D.R. Behrendt: Mater Sci. Eng., A144, pp. 63–74 (1991).Google Scholar
  3. 3.
    M. Singh, and D.R. Behrendt: “Studies on the Reactive Melt Infiltration of Silicon and Silicon-Molybdenum Alloys in Porous Carbon,” NASA TM-105860, 1992.Google Scholar
  4. 4.
    E. Fitzer and R. Gadow: NASA, Washington, DC, Proc. Int. Symp. on Ceramics for Engines, Japan, S. Somiya, ed., 1983, pp. 561–72.Google Scholar
  5. 5.
    W.P. Minnear: Comm. Am. Cer. Soc., 1982, Jan., pp. C-10–C-11.Google Scholar
  6. 6.
    J.N. Ness and T.F. Page: J. Mater. Sci., 1986, vol. 21, pp. 1372–97.CrossRefGoogle Scholar
  7. 7.
    T. Hase, H. Suzuki, and T. Isekei: J. Nucl. Mater., 1976, vol. 59, pp. 42–48.CrossRefGoogle Scholar
  8. 8.
    P. Pampuch, E. Walasek, and J. Bialoskorski: Cer. Int., 1986, vol. 12, pp. 99–106.CrossRefGoogle Scholar
  9. 9.
    R.P. Messner and Y.M. Chiang: J. Am. Ceram. Soc., 1990, vol. 73 (5), pp. 1193–1200.CrossRefGoogle Scholar
  10. 10.
    H.P.G. Darcy: “Les fontaines publiques de la ville de Dijon, Exposition et application des principles a suivre et des formules a employer dans les questions de distribution d’eau,” Victor Dalmont, Paris, 1856.Google Scholar
  11. 11.
    E.O. Einset: J. Am. Ceram. Soc., 79(2), 333–38.Google Scholar
  12. 12.
    G.P. Martins, D.L. Olson, and G.R. Edwards: Metall. Trans. B, 19B, pp. 95–101. (1988).Google Scholar
  13. 13.
    W.B. Hillig: Cer. Bull., 73(4), pp. 56–63. (1994).Google Scholar
  14. 14.
    T.J. Whalen and A.T. Anderson: J. Am. Cer. Soc., 1975, vol. 58(9–10), pp. 396–99.CrossRefGoogle Scholar
  15. 15.
    B.M. Turovskii and I.I. Ivanova: Z. Akad. Nauk SSSR, Neorg. Mater., 1974, vol. 10 (12), pp. 2108–11.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • P. Sangsuwan
    • 1
  • S. N. Tewari
    • 2
  • J. E. Gatica
    • 2
  • M. Singh
    • 3
  • R. Dickerson
    • 4
  1. 1.3M Thailand LimitedBangkokThailand
  2. 2.the Department of Chemical EngineeringCleveland State UniversityCleveland
  3. 3.NYMA, Inc.Lewis Research Center GroupCleveland
  4. 4.Los Alamos National LaboratoriesLos AlamosUSA

Personalised recommendations