Metallurgical and Materials Transactions B

, Volume 28, Issue 6, pp 1241–1248 | Cite as

Effect of Pd, Cu, and Ni additions on the kinetics of NiCl2 reduction by hydrogen

  • S. R. Stopić
  • I. B. Ilić
  • D. P. Uskoković


Differnetial thermal analysis (DTA) and thermal gravimetric analysis (TGA), at a heating rate of 10 °C/min, revealed a complete reduction of NiCl2 by hydrogen in a temperature interval of 375 °C to 450 °C. However, addition of 0.1 mass pct of Pd, Cu, or Ni to the sample caused the reduction to occur at considerably lower temperatures, in the rather narrow range of 315 °C to 370 °C. The activation energy of NiCl2 reduction by hydrogen (between 300 °C and 550 °C) without additives is 54 kJ/mol, and with Pd and Cu or Ni added, under isothermal conditions (from 260 °C to 380 °C), is 33 and 50 kJ/mol, respectively. These values confirm a positive effect of additives on the reduction kinetics. The positive effect of Pd is a consequence of the dissociation and spillover of hydrogen, whereas in the case of Cu and Ni(HCOO)2, it is manifested in a decrease in bonds energy in the nickel lattice because of good Cu solubility, and in the formation of artificial nickel nuclei that intensify the reduction, respectively. Scanning electron microscopy (SEM) analysis of nickel powders obtained under isothermal conditions shows relatively rounded spherical particles (0.321 to 0.780 µm in size) of powder samples with additives, and particles of irregular shape (2.085 µm mean size) of the sample without additives. This illustrates the positive effect of Pd, Cu, or Ni added in the reduction process, in decreasing the size of nickel particles and in the production of a more uniform particle shape.


Material Transaction Differential Thermal Analysis Isothermal Condition Nickel Powder Reduction Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Evans, S. Song, and C. Leon-Sucre: Metall. Trans. B, 1976, vol. 7B, pp. 55–65.Google Scholar
  2. 2.
    J. Szekely and C. Lin: Metall. Trans. B, 1976, vol. 7B, pp. 493–95.Google Scholar
  3. 3.
    C. Lin: Metall. Trans. B, 1988, vol. 19B, pp. 685–86.Google Scholar
  4. 4.
    R. Vreebug, P. van Tongeren, O. Gijzeman, and J. Geus: Surf. Sci., 1992, vol. 272, pp. 294–98.CrossRefGoogle Scholar
  5. 5.
    Y. Rao: J. Met., 1983, vol. 7, pp. 46–50.Google Scholar
  6. 6.
    B. Delmon: Introduction a la Cinetique Heterogene, Technip, Paris, 1969, p. 554.Google Scholar
  7. 7.
    L. Konchakovskaya, V. Skorokhod, and I. Uvarova: Metalli, 1977, vol. 2, pp. 26–29.Google Scholar
  8. 8.
    D. Williams, S. El Rahaiby, and Y. Rao: Metall. Trans. B, 1981, vol. 12B, pp. 161–66 and 192–93.Google Scholar
  9. 9.
    S. Sridhar, D. Sichen, and S. Seetharaman: Z. Metallkd., 1994, vol. 85, pp. 616–20.Google Scholar
  10. 10.
    K. Smith and I. Iwasaki: Min. Met. Proc., 1985, vol. 2, pp. 42–47.Google Scholar
  11. 11.
    A. Yentis, G. Haller, and J. Lercher: J. Phys. Chem., 1993, vol. 97, pp. 484–88.CrossRefGoogle Scholar
  12. 12.
    A. Yentis, B. McHugh, G. Haller, and J. Lercher: J. Phys. Chem., 1992, vol. 96, pp. 1324–28.CrossRefGoogle Scholar
  13. 13.
    S. Tauster, S. Fung, and R. Garden: J. Chem. Soc., Perkin Trans., 1978, vol. 1, pp. 170–76.Google Scholar
  14. 14.
    P. Alex, T. Mukherjee, and M. Sundaresan: Hydrometallurgy, 1993, vol. 34, pp. 239–53.CrossRefGoogle Scholar
  15. 15.
    M. Šušić: J. Serb. Chem. Soc., 1995, vol. 60, pp. 1111–15.Google Scholar
  16. 16.
    H. Ishikawa, S. Watabiki, S. Takajo, and K. Otsuka: Sol. St. Phenom., 1992, vol. 25, pp. 175–78.CrossRefGoogle Scholar
  17. 17.
    K. Nagashima, M. Wada, and A. Kato: J. Mater. Res., 1990, vol. 5, pp. 2829–33.Google Scholar
  18. 18.
    S. Stopić, I. Ilić, and D. Uskoković: Int. J. Powder Metall., 1996, vol. 32, pp. 59–65.Google Scholar
  19. 19.
    S. Stopić, I. Ilić, and D. Uskoković: J. Sci. Sintering, 1994, vol. 26, pp. 145–56.Google Scholar
  20. 20.
    M. Mohamed and A. Halawy: J. Therm. Anal., 1994, vol. 41, pp. 147–59.CrossRefGoogle Scholar
  21. 21.
    S. Kanungo and S. Mishra: Termochim. Acta, 1994, vol. 241, pp. 171–89.CrossRefGoogle Scholar
  22. 22.
    Y. Rao, S. El-Rahaiby, and W. Taylor: Trans. Inst. Min. Met., 1980, vol. 89, pp. 186–89.Google Scholar
  23. 23.
    E. Underwood: Quantitative Stereology, Addison-Wesley Publishing Company, Reading, MA, 1970, pp. 81–158.Google Scholar
  24. 24.
    H. Exner and H. Hougardy: Quantitative Image Analysis of Microstructures, DGM Information-Gesellschaft GmbH Verlag, Oberursel, Germany, 1988, pp. 11–12.Google Scholar
  25. 25.
    L. Pil, B. Burilev, and E. Babich: Cvet. Metall., 1988, vol. 1, pp. 21–25.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1997

Authors and Affiliations

  • S. R. Stopić
    • 1
  • I. B. Ilić
    • 1
  • D. P. Uskoković
    • 2
  1. 1.the Department of Nonferrous Metallurgy at Faculty of Technology and MetallurgybelgradeYugoslavia
  2. 2.the Division for Advanced Materials and ProcessesInstitute of Technical Sciences, the Serbian Academy of Sciences and ArtsBelgradeYugoslavia

Personalised recommendations