Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Prediction of Behavior of Alumina Inclusion in Front of Solid–Liquid Interface in SPFH590 Steel

  • 84 Accesses

Abstract

To predict the behavior of an alumina inclusion in front of the solid–liquid interface during solidification, the interfacial tension between SPFH590 micro-alloyed steel and alumina was experimentally determined. The surface tension of the micro-alloyed steel was measured by the constrained drop method, and the contact angle between the micro-alloyed steel and alumina was investigated by the sessile drop method. Temperature was controlled within the range of 1823 K to 1873 K, and the sulfur concentration in the steel was set in the range of 11 to 94 ppm. With increasing temperature, the surface tensions of steel samples decreased. Further, with increasing temperature, the contact angles of the samples containing 11 to 72 ppm sulfur decreased whereas that of the sample containing 94 ppm sulfur increased. The experimental data were then used to calculate the interfacial tension between the micro-alloyed steel and alumina according to Young’s equation. With increasing temperature, the interfacial tensions of the samples containing 11 to 72 ppm sulfur decreased whereas that of the sample containing 94 ppm sulfur increased. The behavior of an alumina inclusion in front of the solid–liquid interface in the SPFH590 steel was predicted using the calculated interfacial tension values. It was estimated that an increase in the sulfur concentration from 5 to 10 ppm caused a transition of the inclusion from being in an entrapped state to being pushed away from solid–liquid interface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    JIS G 3134, Japanese Standards Association, revision 18J, November 20, 2018.

  2. 2.

    [2] D.J. Uhlmann, B. Chalmers and K.A. Jackson: J. Appl. Phys., 1964, vol. 35, pp. 2986-93.

  3. 3.

    [3] D. Shangguan, S. Ahuja and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23, pp. 669-680.

  4. 4.

    [4] J. Pötschke and V. Rogge: J. Cryst. Growth: 1989, vol. 94, pp. 726-738.

  5. 5.

    [5] H. Shibata, H. Yin, S. Yoshinaga, T. Emi and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 149-156.

  6. 6.

    [6] D.M. Stefanescu and A.V. Catalina: ISIJ Int., 1998, vol. 38, pp. 503-506.

  7. 7.

    [7] F.R. Juretzko, B.K. Dhindaw, D.M. Stefanescu, S. Sen and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1691-1696.

  8. 8.

    [8] D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, A. Catalina, S. Sen and P.A. Curreri: Metall. Maters. Trans. A, 1998, vol. 29, pp. 1697-1706.

  9. 9.

    [9] A.V. Catalina, S. Mukherjee and D.M. Stefanescu: Metall. Maters. Trans. A, 2000, vol. 31, pp. 2559-2568.

  10. 10.

    [10] Y. Wang, M. Valdez and S. Sridhar: Z. Metallkd, 2002, vol. 93, pp. 12-20.

  11. 11.

    [11] Y. Wang and S. Sridhar: Ironmaking & Steelamking, 2003, vol. 30, pp. 223-228.

  12. 12.

    [12] S. Mukherjee and D.M. Stefanescu: Metall. Mater. Trans. A, 2004, vol. 35, pp. 613-621.

  13. 13.

    [13] S. Mukherjee, M.A.R. Sharif and D.M. Stefanescu: Metall. Mater. Trans. A, 2004, vol. 35, pp. 623-629.

  14. 14.

    [14] H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 22-28.

  15. 15.

    [15] H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 472-479.

  16. 16.

    [16] K.J. Malmberg, H. Shibata, S. Kitamura, P.G. Jönsson, S. Nabeshima and Y. Kishimoto: J. Mater. Sci, 2010, vol. 45, pp. 2157-2164.

  17. 17.

    [17] Z. Wang, K. Mukai and I.J. Lee: ISIJ Int., 1999, vol. 39, pp. 553-562.

  18. 18.

    [18] K. Mukai, M. Zeze and T. Morohoshi: Mater. Sci. Forum, 2006, vol. 508, pp. 211-220.

  19. 19.

    [19] T. Matsushita, K. Mukai and M. Zeze: ISIJ Int., 2013, vol. 53, pp. 18-26.

  20. 20.

    [20] L. Zheng, A. Malfiet, P. Wollant, B. Blanpain and M. Guo: Acta Mater., 2016, vol. 120, pp. 443-452.

  21. 21.

    [21] S.-M. Lee, S.-J. Kim, Y.-B. Kang and H.-G. Lee: ISIJ Int., 2012, vol. 52, pp. 1730-1739.

  22. 22.

    [22] J. Lee and K. Morita: ISIJ Int., 2002, vol. 42, pp. 588-594.

  23. 23.

    [23] J. Lee, A. Kiyose, S. Nakatsuka, M. Nakamoto and T. Tanaka: ISIJ Int., 2004, vol. 44, pp. 1793-1799.

  24. 24.

    [24] S. Min, J. Park and J. Lee: Mater. Lett., 2008, vol. 62, pp. 4464-4466.

  25. 25.

    [25] P.R. Scheller, R.F. Brooks and K.C. Mills: Welding J., 1995, vol. 74, pp. S69-S76.

  26. 26.

    [26] S. Ozawa, K. Morohoshi and T. Hibiya: ISIJ Int., 2014, vol. 54, pp. 2097-2103.

  27. 27.

    [27] B. Szyszkowski: Z. Phys. Chem., 1908, vol. 64, pp. 385-414.

  28. 28.

    [28] J. Willner, G. Siwiec and J. Botor: Appl. Surf. Sci., 2010, vol. 256, pp. 2939-2943.

  29. 29.

    [29] T. Young: Philos. Trans. R. Soc. London, 1805, vol. 95, pp. 65-87.

  30. 30.

    J. Lee, Y. Kim, J. Choe, and M. Abbasi: AISTech 2013 - Iron and Steel Technology Conference Proceedings, 2013, vol. 1, pp. 1117-1122.

  31. 31.

    T. Iida and R.I.L. Guthrie: The Thermophysical Properties of Metallic Liquids, vol. 1, Oxford University Press, Oxford, 2015, pp. 62, 245.

  32. 32.

    [32] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin and S. Petersen: Calphad, 2009, vol. 33, pp. 295-311.

Download references

Acknowledgments

This work was supported by a POSCO research grant and the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (No. P0002019, The Competency Development Program for Industry Specialists).

Author information

Correspondence to Joonho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 20 May, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Park, D., Shim, S. et al. Prediction of Behavior of Alumina Inclusion in Front of Solid–Liquid Interface in SPFH590 Steel. Metall and Materi Trans B (2020). https://doi.org/10.1007/s11663-019-01760-4

Download citation