Advertisement

Characterization of Slag Flow in Fixed Packed Bed of Coke Particles

  • 55 Accesses

Abstract

The static and dynamic holdups of liquid slag flow in a packed coke bed were investigated at a temperature of 1723 K by using the three-dimensional combined discrete element method and a computational fluid dynamics model. Coke particles with three different diameters (8, 14, and 22 mm) were considered. The simulation results for the static holdup agreed well with previously reported experimental results and the prediction values suggested by Jang et al. The simulation results for the dynamic holdup were compared with the values predicted using several water-model-based correlations. The simulation results for the dynamic holdup were slightly lower than the values predicted using the Fukutake model and the Otake and Okada model and were significantly higher than those predicted using the model proposed by Bando et al. The summation of the static and the dynamic holdups yielded the total holdup. With the increase of the modified capillary number (or particle size), the total holdup decreased monotonically, mainly owing to the considerable decrease in the static holdup.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J. Yagi: ISIJ Int., 1993, vol. 33, pp. 619–39.

  2. 2.

    S. Natsui, T. Kikuchi, and R.O. Suzuki: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2395–413.

  3. 3.

    T. Fukutake and V. Rajakumar: Trans. ISIJ, 1982, vol. 22, pp. 355–65.

  4. 4.

    Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science Publishers, New York, 1987.

  5. 5.

    S. Ueda, T. Kon, T. Miki, S. Kim, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 2098–104.

  6. 6.

    S. Ghosh, N.N. Viswanathan, and N.B. Ballal: Steel Res. Int., 2017, vol. 88, pp. 1–25.

  7. 7.

    D.D. Geleta and J. Lee: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3594–602.

  8. 8.

    M. HayasHi, S. Sukenaga, K. Ohno, S. Ueda, K. SunaHara, and N. SaitO: Tetsu-to-Haganesu, 2014, vol. 100, pp. 211–26.

  9. 9.

    H.L. George, B.J. Monaghan, R.J. Longbottom, S.J. Chew, and P.R. Austin: ISIJ Int., 2013, vol. 53, pp. 1172–1179.

  10. 10.

    H. Kawabata, Z. Liu, F. Fujita, and T. Usui: ISIJ Int., 2005, vol. 45, pp. 1466–73.

  11. 11.

    H. Kawabata, K. Shinmyou, T. Harada, and T. Usui: ISIJ Int., 2005, vol. 45, pp. 1474–81.

  12. 12.

    G.S. Gupta and S. Bhattacharyya: ISIJ Int., 2003, vol. 43, pp. 1927–35.

  13. 13.

    W. Xiong, X.G. Bi, G.Q. Wang, and F. Yang: Metall. Mater. Trans. B, 2012, vol. 43, pp. 562–70.

  14. 14.

    T. Sugiyama, T. Nakagawa, H. Sibaike, and Y. Oda: Tetsu-to-Hagane, 1987, vol. 73, pp. 242–9.

  15. 15.

    K. Nishioka, D. Fujiwara, K. Ohno, T. Maeda, and M. Shimizu: ISIJ Int., 2010, vol. 50, pp. 1016–22.

  16. 16.

    D. Jang, M. Shin, J.S. Oh, H.-S. Kim, S.H. Yi, and J. Lee: ISIJ Int., 2014, vol. 54, pp. 1251–5.

  17. 17.

    H.L. George, R.J. Longbottom, S.J. Chew, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 820–6.

  18. 18.

    K. Saito, K. Ohno, T. Miki, Y. Sasaki, and M. Hino: ISIJ Int., 2006, vol. 46, pp. 1783–90.

  19. 19.

    W.M. Husslage, A.M. Reuter, R.H. Heerema, T. Bakker, and A.G.S. Steeghs: Metall. Mater. Trans. B, 2005, vol. 36, pp. 765–76.

  20. 20.

    A.S. Mehta and V. Sahajwalla: Scand. J. Metall., 2000, vol. 29, pp. 17–29.

  21. 21.

    I.-H. Jeong, H.-S. Kim, and Y. Sasaki: ISIJ Int., 2013, vol. 53, pp. 2090–8.

  22. 22.

    H. Ohgusu, Y. Sassa, Y. Tomita, K. Tanaka, and M. Hasegawa: Tetsu-to-Hagane, 1992, vol. 78, pp. 1164–70.

  23. 23.

    I. Jeong, H. Kim, and Y. Sazaki: Tetsu-to-Hagane, 2014, vol. 100, pp. 925–34.

  24. 24.

    J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–9.

  25. 25.

    J. Oh and J. Lee: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1808–13.

  26. 26.

    S. Natsui, T. Kikuchi, R.O. Suzuki, T. Kon, S. Ueda, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 1259–66.

  27. 27.

    T. Kon, S. Natsui, S. Ueda, and H. Nogami: ISIJ Int., 2015, vol. 55, pp. 1284–90.

  28. 28.

    T. Kon, S. Natsui, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2012, vol. 52, pp. 1565–73.

  29. 29.

    S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 51–8.

  30. 30.

    W.J. Yang, Z.Y. Zhou, and A.B. Yu: Chem. Eng. J., 2015, vol. 278, pp. 339–52.

  31. 31.

    S. Natsui, H. Nogami, S. Ueda, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 41–50.

  32. 32.

    Y. Niwa, T. Sumigama, A. Maki, S. Nagano, A. Sakai, and M. Sakurai: Tetsu-to-Hagane, 1990, vol. 76, pp. 337–44.

  33. 33.

    N. Standish: Chem. Eng. Sci., 1968, vol. 23, pp. 51–6.

  34. 34.

    T. Otake and K. Okada: Chem. Eng., 1953, vol. 17, pp. 176–84.

  35. 35.

    Y. Bando, S. Hayashi, A. Matsubara, and M. Nakamura: ISIJ Int., 2005, vol. 45, pp. 1461–5.

  36. 36.

    S. Natsui, S. Ueda, Z. Fan, and N. Andersson: ISIJ Int., 2010, vol. 50, pp. 207–14.

  37. 37.

    T. Nouchi, T. Sato, M. Sato, K. Takeda, and T. Ariyama: ISIJ Int., 2005, vol. 45, pp. 1426–31.

  38. 38.

    P. Cundall and O. Struck: Geotechnique, 1979, vol. 29, pp. 47–65.

  39. 39.

    T.T. Y. Tsuji, T. Kawaguchi: Powder Technol., 1993, vol. 77, pp. 79–87.

  40. 40.

    A.T. Adema, Y.X. Yang, and R. Boom: ISIJ Int., 2010, vol. 50, pp. 954–61.

  41. 41.

    Y. Yu and H. Saxen: ISIJ Int., 2012, vol. 52, pp. 788–96.

  42. 42.

    Y. Yu, A. Westerlund, T. Paananen, and H. Saxén: ISIJ Int., 2011, vol. 51, pp. 1050–6.

  43. 43.

    X.F. Dong, A.B. Yu, J.M. Burgess, D. Pinson, S. Chew, and P. Zulli: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 214–26.

  44. 44.

    S. Matsuhashi, H. Kurosawa, S. Natsui, T. Kon, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2012, vol. 52, pp. 1990–9.

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (20172010106300, Development of hybrid ironmaking processes for lower CO2 emissions) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Correspondence to Joonho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 9 May 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geleta, D.D., Siddiqui, M.I.H. & Lee, J. Characterization of Slag Flow in Fixed Packed Bed of Coke Particles. Metall and Materi Trans B 51, 102–113 (2020) doi:10.1007/s11663-019-01750-6

Download citation