Metallurgical and Materials Transactions B

, Volume 51, Issue 1, pp 327–337 | Cite as

Transition from Crystal to Metallic Glass and Micromechanical Property Change of Fe-B-Si Alloy During Rapid Solidification

  • P. C. Zhang
  • J. Chang
  • H. P. WangEmail author


The effects of high undercooling and a large cooling rate can be achieved by the use of a containerless drop tube technique, which is conducive to rapid solidification and formation of a metastable phase. Here, the rapid solidification of Fe78Si13B9 (S1) and Fe78Si9B13 (S2) alloys was completed under microgravity condition. Based on theoretical calculations, a maximum undercooling of 433 K (0.29 TL) and 412 K (0.28 TL) was obtained, respectively. The microstructure evolution and the formation of an amorphous-nanocrystalline structure for the two alloys were compared and analyzed. The results show that S2 alloy has better amorphous forming ability and higher hardness. During the solidification of S1 alloy, the primary phase α-Fe grows by the manner of dendrites, and the secondary dendrite arm spacing decreases exponentially with increased undercooling. An amorphous-nanocrystalline structure is developed when the undercooling is increased up to 388 K; S2 alloy forms an amorphous-nanocrystalline structure at an undercooling of 275 K and is completely amorphized after exceeding an undercooling of 402 K. In addition, the hardness and elastic modulus are acquired by nanoindentation technology under different degrees of undercooling. The phase constitution, morphology, distribution, and grain refinement of the alloys have important effects on the micromechanical properties of these alloys.



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51734008, 51522102, and 51771154), the National Key R&D Program of China (Grant No. 2018YFB2001800), and the Fundamental Research Funds for the Central Universities. The authors are grateful to Dr. D.L. Geng and Miss W. Liu for their valuable help with the experiments.


  1. 1.
    O. Oloyede, T.D. Bigg, R.F. Cochrane, and A.M. Mullis: Mater. Sci. Eng. A, 2016,vol. 654, pp. 143-50.CrossRefGoogle Scholar
  2. 2.
    P. Lü and H. P. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 499-508.CrossRefGoogle Scholar
  3. 3.
    W.J. Xie and B. Wei: Mater. China, 2017, vol. 36, pp. 001-5.Google Scholar
  4. 4.
    Y. Ruan, Q.Q. Wang, S.Y. Chang, and B. Wei: Acta Mater., 2017, vol. 141, pp. 456-65.CrossRefGoogle Scholar
  5. 5.
    N. Haque, R.F. Cochrane, and A.M. Mullis: Intermetallics, 2016, vol. 76, pp. 70-77.CrossRefGoogle Scholar
  6. 6.
    E. Liu, J. Swerts, S. Couet, S. Mertens, Y. Tomczak, and T. Lin: Appl. Phys. Lett., 2016, vol. 108, p. 132405.CrossRefGoogle Scholar
  7. 7.
    J. Petzold: Scr. Mater., 2003, vol. 48, pp. 895-901.CrossRefGoogle Scholar
  8. 8.
    A.H. Taghvaei and A.M. Khoshrodi: J. Alloy Compd., 2018, vol. 742, pp. 887-96.CrossRefGoogle Scholar
  9. 9.
    M. Srinivas, B. Majumdar, G. Phanikumar, and D. Akhtar: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 370-79.CrossRefGoogle Scholar
  10. 10.
    D.A. Babu, A.P. Srivastava, B. Majumdar, D. Srivastava, and D. Akhtar: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1313-20.CrossRefGoogle Scholar
  11. 11.
    Y.M. Chen, T. Ohkubo, M. Ohta, Y. Yoshizawa, and K. Hono: Acta Mater., 2009, vol. 57, pp. 4463-72.CrossRefGoogle Scholar
  12. 12.
    H.L. Huang, C.L. Yang, Q.J. Song, K. Ye, and F. Liu: J. Appl. Phys., 2016, vol. 120, p. 043905.CrossRefGoogle Scholar
  13. 13.
    Y. Yoshizawa, S. Oguma, and K. Yamauchi: J. Appl. Phys., 1988, vol. 64, pp. 6044 – 46.CrossRefGoogle Scholar
  14. 14.
    W. Lv and G.J. Chen: J. Magn. Mater. Devices, 2015, vol. 46, pp. 72-76.Google Scholar
  15. 15.
    C.L Yang, G.C. Yang, F. Liu, Y.Z. Chen, N. Liu, D. Chen, and Y.H. Zhou: Physica B, 2006, vol. 373, pp. 136-141.CrossRefGoogle Scholar
  16. 16.
    Z.Z. Zhang, G. Chen, and G.C. Yang: Mater. Sci. Technol., 2001, vol. 9, pp. 342-46.Google Scholar
  17. 17.
    S.L. Ye, X.Y. Li, X.F. Bian, W.M. Wang, L.J. Yin, and B. An: J. Alloy Compd., 2013, vol. 562, pp. 143-149.CrossRefGoogle Scholar
  18. 18.
    G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina: Mater. Lett., 2013, vol. 97, pp. 15-17.CrossRefGoogle Scholar
  19. 19.
    Y.C. Niu, X.F. Bian, W.M. Wang, X.B. Qing, and G.F. Wang: Mater. Lett., 2005, vol. 59, pp. 1589-94.CrossRefGoogle Scholar
  20. 20.
    A. Sinha, G.G. Khan, B. Mondal, J.D. Majumdar, and P.P. Chattopadhyay: Metall. Mater. Trans. B, 2015, vol.46B, pp. 1951-58.CrossRefGoogle Scholar
  21. 21.
    A.A. Golubenko, Yu.V. Milman, and S.N. Dub: Acta Mater., 2011, vol. 59, pp. 7480–87.CrossRefGoogle Scholar
  22. 22.
    D. Qian, A.F. Zhang, J.X. Zhu, Y. Li, W.X. Zhu, B.L. Qi, N. Tamura, D.C. Li, Z.X. Song, and K. Chen: Appl. Phys. Lett., 2016, vol. 109, p. 101907.CrossRefGoogle Scholar
  23. 23.
    H.Y. Gou, N. Dubrovinskaia, E. Bykova, A. Tsirlin, D.Kasinathan, W. Schnelle, A. Richter, M. Merlini, M. Hanfland, A. Abakumov, D. Batuk, G.Van Tendeloo, Y. Nakajima, A. Kolmogorov, and L. Dubrovinsky: Phys. Rev. Lett., 2013, vol. 111, p. 157002.CrossRefGoogle Scholar
  24. 24.
    W. Liu, N. Yan, and H.P. Wang: Sci. China Tech. Sci., 2019, vol. 61, pp. 1-11.Google Scholar
  25. 25.
    M.X. Li, H.P. Wang, N. Yan, and B. Wei: Sci. China Tech. Sci., 2018, vol. 61, pp. 1021-30.CrossRefGoogle Scholar
  26. 26.
    V.I. Tkatch, S.N. Denisenko, and O.N. Beloshov: Acta Mater., 1997, vol. 45, pp. 2821-26.CrossRefGoogle Scholar
  27. 27.
    Y.H. Wu, J. Chang, W.L. Wang, L. Hu, S.J. Yang, and B. Wei: Acta Mater., 2017, vol. 129, pp. 366-77.CrossRefGoogle Scholar
  28. 28.
    E.S. Lee and S. Ahn: Acta Metall. Mater., 1994, vol. 42, pp. 3231-43.CrossRefGoogle Scholar
  29. 29.
    W.T. Kim, P.W. Jang, S.C. Yu, and B.S. Chun: Mater. Sci. Eng. A, 1994, vol. 179-180, pp. 309-15..Google Scholar
  30. 30.
    M. Colombo, E. Gariboldia, and A. Morri: Mater. Sci. Eng. A, 2018, vol. 713, pp. 151-60.CrossRefGoogle Scholar
  31. 31.
    E. Acer, E. Çadırlı, H. Erol, H. Kaya, and M. Gündüz: Metall. Trans. A, 2017, vol. 48, pp. 1-13.CrossRefGoogle Scholar
  32. 32.
    T. Kulik: J. Non-Cryst. Solids, 2001, vol. 287, pp. 145-61.CrossRefGoogle Scholar
  33. 33.
    S. An, Y. Li, J.H. Li, S. Zhao, B.X. Liu, and P.F. Guan: Acta Mater., 2018, vol. 152, pp. 1-6.CrossRefGoogle Scholar
  34. 34.
    P. Desre, I. Ansara, P. Cremer, and J. C. Joud: Calphad, 1989, vol. 13, pp. 89-96.CrossRefGoogle Scholar
  35. 35.
    Y.Y. Sun, M. Song, X.Z. Liao, G. Sha, and Y.H. He: Mater. Sci. Eng. A, 2012, vol. 543, pp. 145-51.CrossRefGoogle Scholar
  36. 36.
    H. Bei, Z.P. Lu, S. Shim, G. Chen, and E.P. Georgea: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1735-42.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations