Advertisement

Interfacial Interactions Between Inclusions Comprising TiO2 or TiN and the Mold Flux During the Casting of Titanium-Stabilized Stainless Steel

  • Lejun Zhou
  • Zihang Pan
  • Wanlin WangEmail author
  • Junyu Chen
  • Liwen Xue
  • Tongsheng Zhang
  • Lei Zhang
Article

Abstract

Interfacial properties play a key role in determining the solubility of solids in liquids for both low- and high-temperature processes. In this study, the interfacial interactions between inclusions comprising TiO2 or TiN and the mold flux were investigated. The results of sessile drop tests show that the wettability of the mold flux on the TiO2 substrate was better than that on the TiN substrate when the temperature was below 1503 K. However, the contact angle on the TiN substrate decreased more than that on the TiO2 substrate when the temperature was above 1503 K due to the enhancement of the interfacial reaction. The thermodynamic calculations suggest that the reactions of TiN with O2 and SiO2 resulted in a bubbling phenomenon during the TiN sessile drop test. The scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) results show that the final products of the interfacial interaction between the mold flux and the TiO2 substrate comprised perovskites, whereas those for the TiN substrate comprised perovskites and SiTi.

Notes

Acknowledgments

This work was supported by the national natural science foundation of China (51874363, U1760202), the Natural Science Foundation of Hunan Province (2019JJ40345), and Hunan Scientific Technology projects (2018RS3022, 2018WK2051).

References

  1. 1.
    [1] B. Ozturk, R. Matway and R. J. Fruehan: Metall. Mater. Trans. B, 1995, vol.26, pp.563-567.CrossRefGoogle Scholar
  2. 2.
    [2] Q. Wang, Y. J. Lu, S. P. He, K. C. Mills and Z. S. Li: Ironmak. Steelmak., 2011, vol.38, pp.297-301.CrossRefGoogle Scholar
  3. 3.
    [3] J. O. Jo, W. Y. Kim, D. S. Kim and J. J. Pak: Met. Mater. Int.,2008, vol.14, pp.531-537.CrossRefGoogle Scholar
  4. 4.
    [4] X. Yin, Y. Sun, Y. Yang, X. Bai, M. Barati and A. Mclean: Metall. Mater. Trans. B, 2016, vol.47, pp.3274-3284.CrossRefGoogle Scholar
  5. 5.
    [5] D. Kruger and A. Garbers-Craig: Metall. Mater. Trans. B, 2017, vol.48, pp.1514-1532.CrossRefGoogle Scholar
  6. 6.
    [6] J. H. Park and Y. Kang: Steel. Res. Int., 2017, vol.88, pp.1700130.CrossRefGoogle Scholar
  7. 7.
    [7] S. Xu, X. Q. Wu, E. H. Han, W. Ke and Y. Katada: Mater. Sci. Eng. A, 2008, vol.490, pp.16-25.CrossRefGoogle Scholar
  8. 8.
    [8] M. B. Leban and R. Tisu: Eng. Fail. Anal., 2013, vol.33, pp.430-438.CrossRefGoogle Scholar
  9. 9.
    [9] H. Park, J. Y. Park, G. H. Kim and I. Sohn: Steel Res. Int., 2012, vol.83, pp.150-156.CrossRefGoogle Scholar
  10. 10.
    [10] Z. Wang, Q. Shu and K. Chou: Metall. Mater. Trans. B, 2013, vol.44, pp.606-613.CrossRefGoogle Scholar
  11. 11.
    [11] J. B. Kim and I. Sohn: J. Non-Cryst. Solids, 2013, vol.379, pp.235-243.CrossRefGoogle Scholar
  12. 12.
    [12] Z. Hao, W. Chen and C. Lippold: Metall. Mater. Trans. B, 2010, vol.41, pp.805-812.CrossRefGoogle Scholar
  13. 13.
    [13] M. Sharma, H. A. Dabkowska and N. Dogan: Steel Res. Int., 2019, vol.90, pp.1800367.CrossRefGoogle Scholar
  14. 14.
    [14] Z. Ren, X. Hu, X. Hou, X. Xue and K. Chou: Int. J. Min. Met. Mater., 2014, vol.21, pp.345-352.CrossRefGoogle Scholar
  15. 15.
    [15] B. Ozturk: Metall. Mater. Trans. B, 1992, vol.23, pp.523-526.CrossRefGoogle Scholar
  16. 16.
    [16] S. K. Michelic and C. Bernhard: Scanning, 2017, vol.2017, pp.1-14.CrossRefGoogle Scholar
  17. 17.
    [17] W. Wang, E. Gao, L. Zhou, L. Zhang and H. Li: J. Iron Steel Res. Int., 2019, vol.26, pp.335-364.CrossRefGoogle Scholar
  18. 18.
    [18] T. Mukongo, P. C. Pistorius and A. M. Garbers-Craig: Ironmaking& steelmaking, 2004, vol.31, pp.135-143.CrossRefGoogle Scholar
  19. 19.
    [19] P. Rocabois, J. Lehmann, C. Gatellier and J. P. Teres: Ironmaking& steelmaking, 2003, vol. 30, pp.95-100.CrossRefGoogle Scholar
  20. 20.
    [20] O. K. Tokovoi and D. V. Shaburov: Steel In Trans., 2013, vol.43, pp.678-680.CrossRefGoogle Scholar
  21. 21.
    [21] Z. Chen, M. Li, X. Wang, S. He and Q. Wang: Metals, 2019, vol.9, pp.635-650.CrossRefGoogle Scholar
  22. 22.
    [22] L. Zhou, J. Li, W. Wang and I. Sohn: Metall. Mater. Trans. B, 2017, vol.48, pp.1943–1950.CrossRefGoogle Scholar
  23. 23.
    [23] W. Wang, J. Li, L. Zhou and J. Yang: Met. Mater. Int., 2016, vol.22, pp.700-706.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Lejun Zhou
    • 1
    • 2
  • Zihang Pan
    • 1
    • 2
  • Wanlin Wang
    • 1
    • 2
    Email author
  • Junyu Chen
    • 1
    • 2
  • Liwen Xue
    • 1
    • 2
  • Tongsheng Zhang
    • 1
    • 2
  • Lei Zhang
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.National Center for International Research of Clean MetallurgyCentral South UniversityChangshaChina

Personalised recommendations