Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

CFD Investigation of Effect of Multi-hole Ceramic Filter on Inclusion Removal in a Two-Strand Tundish

  • 178 Accesses

Abstract

Multi-hole ceramic filter is regarded as an effective and cheap method of additional flow control device in tundish. In order to evaluate the performance of the ceramic filter, a transient three-dimensional (3D) comprehensive numerical model has been developed to study the flow pattern, temperature distribution and residence time of the molten steel, as well as the elimination of inclusion in a full size two-strand tundish. One-way coupled Euler–Lagrange approach with random walk model was adopted to track the inclusion motion trajectory. The gravity, buoyancy, drag, virtual mass, lift, pressure gradient, and rebound forces were included. The inclusion Reynolds number was utilized for the judgment of the inclusion separation at the slag-steel interface and the internal surface of the filter hole. Besides, the residence time distribution curve has been analyzed for figuring out the macroscopic mixing of the molten steel. The results indicate that the ceramic filter increases the flow resistance of the molten steel in the tundish, resulting in a longer residence time and a higher temperature drop. Except removed by the covering molten slag, the inclusion could also be trapped by the filter hole when the molten steel travels through the ceramic filter. The elimination of the smaller inclusion is significantly improved. The removal ratio of the 1 μm inclusion in the tundish without ceramic filter is only 59.3 pct, while the value is improved to 65.3 pct if we apply the ceramic filter with slenderness ratio of 3 to the tundish. And with the slenderness ratio changing from 3 to 5, the removal ratio of the 1 μm inclusion increases from 65.3 to 72.0 pct. Additionally, the ceramic filter could counteract certain side effects of the increasing inclusion density on the removal, especially for the smaller inclusion. With the inclusion density increasing from 3990 to 5000 kg/m3, the removal ratio of the 1 μm inclusion decreases by 14.5 pct in the tundish without ceramic filter, and after using the ceramic filter, the removal ratio decreases by 13.0, 7.4, and 5.0 pct with the slenderness ratio varies from 3 to 5.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. 1.

    K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2010, vol. 50 (3), pp. 331-348.

  2. 2.

    Q. Wang, F.S. Qi, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54 (12), pp. 2796-2805.

  3. 3.

    S. López-Ramirez, J. de Barreto, J. Palafox-Ramos, R.D. Morales, and D. Zacharias: Metall. Mater. Trans. B, 2001, vol. 32B (4), pp. 615-627.

  4. 4.

    P.K. Jha, P.S. Rao, and A. Dewan: ISIJ Int., 2008, vol. 48 (2), pp. 154-160.

  5. 5.

    J.P. Rogler, L.J. Heaslip, and M. Mehrvar: Can. Metall. Quart., 2004, vol. 43 (3), pp. 407-415.

  6. 6.

    S. Neumann, A. Asad, T. Kasper, and R. Schwarze: Metall. Mater. Trans. B, 2019, vol. 50B (5), pp. 2334-2342.

  7. 7.

    M.R.M. Yazdi, A.R.F. Khorasani, and S. Talebi: Can. Metall. Quart., 2019, vol. 58 (4), pp. 379-388.

  8. 8.

    P Ni, LTI Jonsson, M Ersson, PG Jönsson (2017) Steel Res. Int., 83(3): 1600155.

  9. 9.

    R. Mishra and D. Mazumdar: Trans. Indian Inst. Met., 2019, vol. 72 (4), pp. 889-898.

  10. 10.

    L.H. Wang, H.-G. Lee, and P. Hayes: ISIJ Int., 1996, vol. 36 (1), pp. 17-24.

  11. 11.

    S. Ali, R. Mutharasan, and D. Apelian: Metall. Trans. B, 1985, vol. 16B (6), pp. 725-742.

  12. 12.

    K. Yamada, T. Watanabe, K. Fukuda, T. Kawaragi, and T. Tashiro: Trans. ISIJ, 1987, vol. 27, pp. 873-877.

  13. 13.

    K. Janiszewski: Arch. Metall. Mater., 2013, vol. 58 (2), pp. 513-521.

  14. 14.

    L. Bulkowski, U. Galisz, H. Kania, Z. Kudliński, J. Pieprzyca, and J. Barański: Arch. Metall. Mater., 2012, vol. 57 (1), pp. 363-369.

  15. 15.

    K. Janiszewski: Steel Res. Int., 2013, vol. 84 (3), pp. 288-296.

  16. 16.

    M. Warzecha, T. Merder, P. Warzecha, and G. Stradomski: ISIJ Int., 2013, vol. 53 (11), pp. 1983-1992.

  17. 17.

    H.-J. Odenthal, M. Javurek, and M. Kirschen: Steel Res. Int., 2009, vol. 80 (4), pp. 264-274.

  18. 18.

    H.-J. Odenthal, M. Javurek, M. Kirschen, and N. Vogl: Steel Res. Int., 2010, vol. 81 (7), pp. 529-541.

  19. 19.

    M. Javurek, B. Kaufmann, G. Zuba, and P. Gittler: Steel Res., 2002, vol. 73 (5), pp. 186-193.

  20. 20.

    E. Gutiérrez, S. Garcia-Hernandez, and J.J. Barreto: Steel Res. Int., 2019, p. 1900328.

  21. 21.

    F. Xing, S. Zheng, Z. Liu, and M. Zhu (2019) J. Metals, 9(5):561.

  22. 22.

    C. Chen: Doctoral thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2001, pp. 1–4.

  23. 23.

    Q.F. Hou and Z.S. Zou: ISIJ Int., 2005, vol. 45 (3), pp. 325-330.

  24. 24.

    Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B (4), pp. 639-654.

  25. 25.

    L.F. Zhang, S. Taniguchi, and K.K. Cai: Metall. Mater. Trans. B, 2000, vol. 31B (2), pp. 253-266.

  26. 26.

    K. Raghavendra, S. Sarkar, S.K. Ajmani, M.B. Denys, and M.K. Singh: Appl. Math. Model., 2013, vol. 37, pp. 6284-6300.

  27. 27.

    J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45 (11), pp. 1597-1606.

  28. 28.

    C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Mater. Trans. B, 2016, vol. 47B (3), pp. 1882-1892.

  29. 29.

    M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, and W.A. Wakeham (2006) J. Phys. Chem. Ref. Data, 35(1): 285-300.

  30. 30.

    T. Nishi, H. Shibata, H. Ohta, and Y. Waseda: Metall. Mater. Trans. A, 2003, vol. 34A (12), pp. 2801-2807.

  31. 31.

    S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, and H.B. Yang: Metall. Mater. Trans. B, 2014, vol. 45B (6), pp. 2453-2463.

  32. 32.

    Q. Wang, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54 (2), pp. 311-320.

  33. 33.

    K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2012, vol. 52 (11), pp. 2026-2035.

  34. 34.

    Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, and H.B. Li: Int. J. Heat Mass Trans., 2018, vol. 125, pp. 1333-1344.

  35. 35.

    B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B (1), pp. 22-35

  36. 36.

    D. Bouris and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B (3), pp. 641-649.

  37. 37.

    J.K. Kim and P.K. Rohatgi: Metall. Mater. Trans. A, 1998, vol. 29A (1), pp. 351-358.

  38. 38.

    K. Takahashi, M. Ando, and T. Ishii: ISIJ Int., 2014, vol. 54 (2), pp. 304-310.

  39. 39.

    U.D. Salgado, C. Weiβ, S.K. Michelic, and C. Bernhard: Metall. Mater. Trans. B, 2018, vol. 49B (4), pp. 1632-1643.

  40. 40.

    C. Chen, L.T.I. Jonsson, A. Tilliander, G.G. Cheng, and P.G. Jönsson: Metall. Mater. Trans. B, 2015, vol. 46B (1), pp. 169-190.

  41. 41.

    C. Chen, L.T.I. Jonsson, A. Tilliander, G.G. Cheng, and P.G. Jönsson: Chem. Eng. Sci., 2015, vol. 137, pp. 914-937.

  42. 42.

    Y. Ono and S. Matsumoto: Trans. JIM, 1975, vol. 17 (7), pp. 415-422.

  43. 43.

    C. Chen, G.G. Cheng, H.B. Sun, Z.B. Hou, X.C. Wang, and J.Q. Zhang: Steel Res. Int., 2012, vol. 83 (12), pp. 1141-1151.

  44. 44.

    Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36 (6), pp. 667-672.

  45. 45.

    J.H. Shin, Y. Ghung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B (1), pp. 46-59.

Download references

Acknowledgments

The authors’ gratitude goes to the National Natural Science Foundation of China [Grant No. U1860205]. Thanks are also given to Prof. Zhu He at Wuhan University of Science and Technology and Prof. Yongxiang Yang at Delft University of Technology for very helpful advising on numerical simulation, and Baoshan Iron & Steel Co., Ltd. for supporting plant data.

Author information

Correspondence to Guangqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 16, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, Y., Huang, A. et al. CFD Investigation of Effect of Multi-hole Ceramic Filter on Inclusion Removal in a Two-Strand Tundish. Metall and Materi Trans B 51, 276–292 (2020). https://doi.org/10.1007/s11663-019-01736-4

Download citation