Advertisement

CFD Investigation of Effect of Multi-hole Ceramic Filter on Inclusion Removal in a Two-Strand Tundish

  • Qiang Wang
  • Yu Liu
  • Ao Huang
  • Wen Yan
  • Huazhi Gu
  • Guangqiang LiEmail author
Article
  • 73 Downloads

Abstract

Multi-hole ceramic filter is regarded as an effective and cheap method of additional flow control device in tundish. In order to evaluate the performance of the ceramic filter, a transient three-dimensional (3D) comprehensive numerical model has been developed to study the flow pattern, temperature distribution and residence time of the molten steel, as well as the elimination of inclusion in a full size two-strand tundish. One-way coupled Euler–Lagrange approach with random walk model was adopted to track the inclusion motion trajectory. The gravity, buoyancy, drag, virtual mass, lift, pressure gradient, and rebound forces were included. The inclusion Reynolds number was utilized for the judgment of the inclusion separation at the slag-steel interface and the internal surface of the filter hole. Besides, the residence time distribution curve has been analyzed for figuring out the macroscopic mixing of the molten steel. The results indicate that the ceramic filter increases the flow resistance of the molten steel in the tundish, resulting in a longer residence time and a higher temperature drop. Except removed by the covering molten slag, the inclusion could also be trapped by the filter hole when the molten steel travels through the ceramic filter. The elimination of the smaller inclusion is significantly improved. The removal ratio of the 1 μm inclusion in the tundish without ceramic filter is only 59.3 pct, while the value is improved to 65.3 pct if we apply the ceramic filter with slenderness ratio of 3 to the tundish. And with the slenderness ratio changing from 3 to 5, the removal ratio of the 1 μm inclusion increases from 65.3 to 72.0 pct. Additionally, the ceramic filter could counteract certain side effects of the increasing inclusion density on the removal, especially for the smaller inclusion. With the inclusion density increasing from 3990 to 5000 kg/m3, the removal ratio of the 1 μm inclusion decreases by 14.5 pct in the tundish without ceramic filter, and after using the ceramic filter, the removal ratio decreases by 13.0, 7.4, and 5.0 pct with the slenderness ratio varies from 3 to 5.

Notes

Acknowledgments

The authors’ gratitude goes to the National Natural Science Foundation of China [Grant No. U1860205]. Thanks are also given to Prof. Zhu He at Wuhan University of Science and Technology and Prof. Yongxiang Yang at Delft University of Technology for very helpful advising on numerical simulation, and Baoshan Iron & Steel Co., Ltd. for supporting plant data.

References

  1. 1.
    K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2010, vol. 50 (3), pp. 331-348.CrossRefGoogle Scholar
  2. 2.
    Q. Wang, F.S. Qi, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54 (12), pp. 2796-2805.CrossRefGoogle Scholar
  3. 3.
    S. López-Ramirez, J. de Barreto, J. Palafox-Ramos, R.D. Morales, and D. Zacharias: Metall. Mater. Trans. B, 2001, vol. 32B (4), pp. 615-627.CrossRefGoogle Scholar
  4. 4.
    P.K. Jha, P.S. Rao, and A. Dewan: ISIJ Int., 2008, vol. 48 (2), pp. 154-160.CrossRefGoogle Scholar
  5. 5.
    J.P. Rogler, L.J. Heaslip, and M. Mehrvar: Can. Metall. Quart., 2004, vol. 43 (3), pp. 407-415.CrossRefGoogle Scholar
  6. 6.
    S. Neumann, A. Asad, T. Kasper, and R. Schwarze: Metall. Mater. Trans. B, 2019, vol. 50B (5), pp. 2334-2342.CrossRefGoogle Scholar
  7. 7.
    M.R.M. Yazdi, A.R.F. Khorasani, and S. Talebi: Can. Metall. Quart., 2019, vol. 58 (4), pp. 379-388.CrossRefGoogle Scholar
  8. 8.
    P Ni, LTI Jonsson, M Ersson, PG Jönsson (2017) Steel Res. Int., 83(3): 1600155.CrossRefGoogle Scholar
  9. 9.
    R. Mishra and D. Mazumdar: Trans. Indian Inst. Met., 2019, vol. 72 (4), pp. 889-898.CrossRefGoogle Scholar
  10. 10.
    L.H. Wang, H.-G. Lee, and P. Hayes: ISIJ Int., 1996, vol. 36 (1), pp. 17-24.CrossRefGoogle Scholar
  11. 11.
    S. Ali, R. Mutharasan, and D. Apelian: Metall. Trans. B, 1985, vol. 16B (6), pp. 725-742.CrossRefGoogle Scholar
  12. 12.
    K. Yamada, T. Watanabe, K. Fukuda, T. Kawaragi, and T. Tashiro: Trans. ISIJ, 1987, vol. 27, pp. 873-877.CrossRefGoogle Scholar
  13. 13.
    K. Janiszewski: Arch. Metall. Mater., 2013, vol. 58 (2), pp. 513-521.CrossRefGoogle Scholar
  14. 14.
    L. Bulkowski, U. Galisz, H. Kania, Z. Kudliński, J. Pieprzyca, and J. Barański: Arch. Metall. Mater., 2012, vol. 57 (1), pp. 363-369.CrossRefGoogle Scholar
  15. 15.
    K. Janiszewski: Steel Res. Int., 2013, vol. 84 (3), pp. 288-296.CrossRefGoogle Scholar
  16. 16.
    M. Warzecha, T. Merder, P. Warzecha, and G. Stradomski: ISIJ Int., 2013, vol. 53 (11), pp. 1983-1992.CrossRefGoogle Scholar
  17. 17.
    H.-J. Odenthal, M. Javurek, and M. Kirschen: Steel Res. Int., 2009, vol. 80 (4), pp. 264-274.Google Scholar
  18. 18.
    H.-J. Odenthal, M. Javurek, M. Kirschen, and N. Vogl: Steel Res. Int., 2010, vol. 81 (7), pp. 529-541.CrossRefGoogle Scholar
  19. 19.
    M. Javurek, B. Kaufmann, G. Zuba, and P. Gittler: Steel Res., 2002, vol. 73 (5), pp. 186-193.CrossRefGoogle Scholar
  20. 20.
    E. Gutiérrez, S. Garcia-Hernandez, and J.J. Barreto: Steel Res. Int., 2019, p. 1900328.Google Scholar
  21. 21.
    F. Xing, S. Zheng, Z. Liu, and M. Zhu (2019) J. Metals, 9(5):561.CrossRefGoogle Scholar
  22. 22.
    C. Chen: Doctoral thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2001, pp. 1–4.Google Scholar
  23. 23.
    Q.F. Hou and Z.S. Zou: ISIJ Int., 2005, vol. 45 (3), pp. 325-330.CrossRefGoogle Scholar
  24. 24.
    Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B (4), pp. 639-654.CrossRefGoogle Scholar
  25. 25.
    L.F. Zhang, S. Taniguchi, and K.K. Cai: Metall. Mater. Trans. B, 2000, vol. 31B (2), pp. 253-266.CrossRefGoogle Scholar
  26. 26.
    K. Raghavendra, S. Sarkar, S.K. Ajmani, M.B. Denys, and M.K. Singh: Appl. Math. Model., 2013, vol. 37, pp. 6284-6300.CrossRefGoogle Scholar
  27. 27.
    J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45 (11), pp. 1597-1606.CrossRefGoogle Scholar
  28. 28.
    C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Mater. Trans. B, 2016, vol. 47B (3), pp. 1882-1892.CrossRefGoogle Scholar
  29. 29.
    M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, and W.A. Wakeham (2006) J. Phys. Chem. Ref. Data, 35(1): 285-300.CrossRefGoogle Scholar
  30. 30.
    T. Nishi, H. Shibata, H. Ohta, and Y. Waseda: Metall. Mater. Trans. A, 2003, vol. 34A (12), pp. 2801-2807.CrossRefGoogle Scholar
  31. 31.
    S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, and H.B. Yang: Metall. Mater. Trans. B, 2014, vol. 45B (6), pp. 2453-2463.CrossRefGoogle Scholar
  32. 32.
    Q. Wang, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54 (2), pp. 311-320.CrossRefGoogle Scholar
  33. 33.
    K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2012, vol. 52 (11), pp. 2026-2035.CrossRefGoogle Scholar
  34. 34.
    Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, and H.B. Li: Int. J. Heat Mass Trans., 2018, vol. 125, pp. 1333-1344.CrossRefGoogle Scholar
  35. 35.
    B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B (1), pp. 22-35CrossRefGoogle Scholar
  36. 36.
    D. Bouris and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B (3), pp. 641-649.CrossRefGoogle Scholar
  37. 37.
    J.K. Kim and P.K. Rohatgi: Metall. Mater. Trans. A, 1998, vol. 29A (1), pp. 351-358.CrossRefGoogle Scholar
  38. 38.
    K. Takahashi, M. Ando, and T. Ishii: ISIJ Int., 2014, vol. 54 (2), pp. 304-310.CrossRefGoogle Scholar
  39. 39.
    U.D. Salgado, C. Weiβ, S.K. Michelic, and C. Bernhard: Metall. Mater. Trans. B, 2018, vol. 49B (4), pp. 1632-1643.CrossRefGoogle Scholar
  40. 40.
    C. Chen, L.T.I. Jonsson, A. Tilliander, G.G. Cheng, and P.G. Jönsson: Metall. Mater. Trans. B, 2015, vol. 46B (1), pp. 169-190.CrossRefGoogle Scholar
  41. 41.
    C. Chen, L.T.I. Jonsson, A. Tilliander, G.G. Cheng, and P.G. Jönsson: Chem. Eng. Sci., 2015, vol. 137, pp. 914-937.CrossRefGoogle Scholar
  42. 42.
    Y. Ono and S. Matsumoto: Trans. JIM, 1975, vol. 17 (7), pp. 415-422.CrossRefGoogle Scholar
  43. 43.
    C. Chen, G.G. Cheng, H.B. Sun, Z.B. Hou, X.C. Wang, and J.Q. Zhang: Steel Res. Int., 2012, vol. 83 (12), pp. 1141-1151.CrossRefGoogle Scholar
  44. 44.
    Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36 (6), pp. 667-672.CrossRefGoogle Scholar
  45. 45.
    J.H. Shin, Y. Ghung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B (1), pp. 46-59.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Qiang Wang
    • 1
    • 2
  • Yu Liu
    • 1
    • 2
  • Ao Huang
    • 1
    • 2
  • Wen Yan
    • 1
    • 2
  • Huazhi Gu
    • 1
    • 2
  • Guangqiang Li
    • 1
    • 2
    Email author
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanP.R. China
  2. 2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of EducationWuhan University of Science and TechnologyWuhanP.R. China

Personalised recommendations