Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence Mechanism of SiO2 on the Oxidation Behavior and Induration Process of Hongge Vanadium Titanomagnetite Pellets

  • 108 Accesses

Abstract

As part of ongoing work to develop a low fuel consumption smelting process for comprehensive utilization of Hongge vanadium titanomagnetite (HVTM), the influence mechanism of SiO2 on the oxidation behavior and induration process of HVTM pellets (HVTMP) was investigated in this study. Results showed that as the amount of added SiO2 increased, the oxidation degree and compressive strength of HVTMP decreased rapidly while porosity increased. SiO2 had little effect on phase composition; however, it greatly influenced the microstructural evolution of HVTMP. Moreover, the Si-rich phases that precipitated at the grain boundary reduced grain migration, eventually suppressed grain growth, and affected the induration process. A schematic based on the experimental results was proposed to discuss the induration mechanism of HVTMP with different SiO2 additions. The results could provide theoretical and technical foundations for the comprehensive utilization of HVTM.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Adapted from Ref. [41], with permission

Fig. 12
Figure 13
Figure 14

References

  1. 1.

    T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 252-60.

  2. 2.

    H.M. Long, T.J. Chun, P. Wang, Q.M. Meng, Z.X. Di, and J.X. Li: Metall. Mater. Trans. B, 2016, 47B, pp. 1765-72.

  3. 3.

    X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai: ISIJ Int., 2013, vol. 53, pp. 1115-19.

  4. 4.

    H.G. Du, Theory of smelting vanadium-bearing titanomagnetite by blast furnace, Science Press, Beijing, 1996.

  5. 5.

    J.H. Luo, Z.Y. Wu, E.H. Wu, J.H. Li, X.J. Liao, R. Tang, and S.L. Yang: Iron Steel Vanadium Titan., 2015, vol. 36, pp. 73-77.

  6. 6.

    H.Y. Sun, X.J. Dong, X.F. She, Q.G. Xue, and J.S. Wang: ISIJ Int., 2013, vol. 53, pp. 564-69.

  7. 7.

    G. Chen, J. Chen, and J.H. Peng: Powder Technol., 2015, vol. 286, pp. 218-22.

  8. 8.

    M. Zhou, T. Jiang, S.T. Yang, and X.X. Xue: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 917-25.

  9. 9.

    M.Y. Wang, L.N. Zhang, L. Zhang, Z.T. Sui, and G.F. Tu: Nonferrous Met. Soc. China., 2006, vol. 16, pp. 421-25.

  10. 10.

    W. Lv, C.G. Bai, X.W. Lv, K. Hu, X.M. Lv, J.Y. Xiang, and B. Song: Powder Technol., 2018, vol. 340, pp. 354-61.

  11. 11.

    G. Wang, J.S. Wang, and Q.G. Xue: Metals., 2018, vol. 8, art. no. 1050.

  12. 12.

    T. Hu, X.W. Lv, and C.G. Bai: Steel Res. Int., 2016, vol. 87, pp. 494-500.

  13. 13.

    Z. Ma, R. Xiao, and L.Y. Chen: Fuel Process. Technol., 2017, vol. 168, pp. 20-26.

  14. 14.

    E.H. Wu, R. Zhu, S. L. Yang, L. Ma, J. Li, and J. Hou: J. Iron Steel Res. Int., 2016, vol. 23, pp. 655-60.

  15. 15.

    S.Samanta, M.C. Goswami, T.K. Baidya, S. Mukherjee, and R. Dey: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 917-24.

  16. 16.

    L.S. Zhao, L.N. Wang, D.S. Chen, H.X. Zhao, Y.H. Liu, and T. Qi: Trans. Nonferrous Met. Soc. China., 2015, vol. 25. pp. 1325-33.

  17. 17.

    X.F. Liao, L.B. Zhang, J.H. Peng, T. Hu, G. Lin, L. Yang, and S.L. Wang: Powder Technol., 2017, vol. 311, pp. 34-40.

  18. 18.

    K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, and S.B. Lalvani: Fuel Process. Technol., 2004, vol. 86, pp. 33-47.

  19. 19.

    H.Y. Sun, J.S. Wang, Y.H. Han, X.F. She, and Q.G. Xue: Int. J. Miner. Process., 2013, vol. 125, pp. 122-28.

  20. 20.

    W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Steel Res. Int., 2017, vol. 88, art. no. 1600120.

  21. 21.

    W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Steel Res. Int., 2017, vol. 88, art. no. 1600228.

  22. 22.

    W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Powder Technol., 2017, vol. 310, pp. 343-50.

  23. 23.

    W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 391-98.

  24. 24.

    W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Ironmak Steelmak., 2018, vol. 45, pp. 913-18.

  25. 25.

    Y.F. Guo, S. Wang, Y. He, T. Jiang, F. Chen, and F.Q. Zheng: Fuel Process. Technol., 2017, vol. 161, pp. 33-40.

  26. 26.

    Z.C. Huang, L.Y. Yi, and T. Jiang: Powder Technol., 2012, vol. 221, pp. 284-91.

  27. 27.

    M. Gan, Z.Y. Ji, X.H. Fan, W. Lv, R.Y. Zheng, X.L. Chen, S. Liu, and T. Jiang: Powder Technol., 2018, vol. 333, pp. 385-93.

  28. 28.

    W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Ironmak Steelmak., 2017, vol. 44, pp. 294-303.

  29. 29.

    F. Pan, Z. Du, M.J. Zhang, and H.Y. Sun: ISIJ Int., 2017, vol. 57, pp. 413-419.

  30. 30.

    S.P.E. Forsmo, S.E. Forsmo, P.O. Samskog, and B.M.T. Björkman: Powder Technol., 2008, vol. 183, pp. 247-259.

  31. 31.

    Y. Tsuchiya, T. Yoshida, Fuel Process. Technol., 2017, vol. 156, pp. 68-71.

  32. 32.

    J.B. Zhang, G.Y. Zhang, Q.S. Zhu, C. Lei, Z.H. Xie, and H.Z. Li: Metall. Mater. Trans. B., 2014, vol. 45, pp. 914-22.

  33. 33.

    M. Iljana, A. Kemppainen, T. Paananen, O. Mattila, E. Pisilä, M. Kondrakov, and T Fabritius: Int. J. Miner. Process, 2015, vol.141, pp. 34-43.

  34. 34.

    A. A. El-Geassy, M. I. Nasr, and E. A. Mousa: Steel Res. Int., 2010, vol. 81, pp. 178-85.

  35. 35.

    W. H. Kim, Y. S. Lee, I. K. Suh, and D. J. Min: ISIJ Int., 2012, vol. 52, pp. 1463-71.

  36. 36.

    W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: J. Iron Steel Res. Int, 2017, vol. 14, pp. 34-42.

  37. 37.

    G. H. Han, T. Jiang, Y. B. Zhang, Y. F. Huang, and G. H. Li: J. Iron Steel Res. Int, 2011, vol. 18, pp. 14-19.

  38. 38.

    Y.M. Zhang, Pellet production technology, Metallurgical Industry Press, Beijing, 2005.

  39. 39.

    A. Hutton and A.J. Mandile: J. Afr. Earth Sci., 1996, vol. 23, pp. 61-72.

  40. 40.

    R.J. Hill and C.J. Howard: J. Appl. Crystallogr., 1987, vol. 20: pp. 467-74.

  41. 41.

    D.Q. Zhu, T.J. Chun, J. Pan, and J.L. Zhang: Int. J. Miner. Process, 2013, vol. 125: pp. 51-60.

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (51904066), Fundamental Research Funds for the Central Universities (N182503032), Postdoctoral Foundation of Northeastern University (20190201) and Postdoctoral International Exchange Program (Dispatch Project, 20190075).

Author information

Correspondence to Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 28, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Li, W., Chu, M. et al. Influence Mechanism of SiO2 on the Oxidation Behavior and Induration Process of Hongge Vanadium Titanomagnetite Pellets. Metall and Materi Trans B 51, 114–123 (2020). https://doi.org/10.1007/s11663-019-01734-6

Download citation