Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Cathodic Wear by Delamination of the Al4C3 Layer During Aluminium Electrolysis

  • 71 Accesses

Abstract

In aluminium reduction cells, an electrochemical reaction occurs between the molten electrolyte film below the aluminium pad and the carbon cathode blocks, leading to the formation of an Al4C3 layer on the cathode blocks. The properties and role of this Al4C3 layer are therefore important for the aluminium production industry, as they could help increase the life expectancy of electrolysis cells and impact the resistive voltage losses. The purpose of this study is to gain a better understanding of the formation, growth and mechanical stability of the aluminium carbide layer formed on top of the cathode block. A reliable scenario describing both the mechanical and electrochemical behaviours of the Al4C3 layer is proposed. For different industrial graphitized cathode grades, a series of experiments were carried out in a bench-scale Hall-Héroult electrolysis cell and the Al4C3 layer formed on top of the cathode was characterized. Thereafter, the CALPHAD method was combined with density functional theory simulations to estimate the electrical and physical properties of Al4C3 together with the phase equilibria occurring at the interface between the carbide layer and the aluminium pad and the cathode blocks respectively. From these calculations, a scenario for carbide layer growth and mechanical stability was established.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    S. Pietrzyk, P. Palimaka, and W. Gebarowski. Archives of Metallurgy and Materials, 2014, 59: 545–550.

  2. 2.

    O. Ostrem: Ph.D. Thesis, Norwegian University of Science and Technology, 2013.

  3. 3.

    S. Nobakhtghalati: Master’s Thesis, Institutt for materialteknologi, 2014.

  4. 4.

    J.-R. Landry, M. Fallah Fini, G. Soucy, M. Désilets, P. Pelletier, L. Rivoaland, D. Lombard: in Light Metals O. Martin, ed., Springer International Publishing, Cham, 2018, pp. 1229–33.

  5. 5.

    K. Vasshaug, T. Foosnaes, G.M. Haarberg, A.P. Ratvik, E. Skybakmoen: Light Met. (Warrendale, PA), pp. 1111–16, 2009

  6. 6.

    W.R. King and R.C. Dorward: J. Electrochem. Soc., 1985, 132: 388–89.

  7. 7.

    P.A. Solli, T. Haarberg, T. Eggen, E. Skybakmoen, A. Sterten: Light Met. (Warrendale, PA), pp. 195–203, 1994

  8. 8.

    L. Oden, and R. McCune. Metallurgical Transactions A, 1987, 18: 2005–14.

  9. 9.

    C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A.V. Ende. Calphad, 2016, 54: 35-53.

  10. 10.

    J. Gröbner, H.L. Lukas, and F. Aldinger. Calphad, 1996, 20: 247–254.

  11. 11.

    E.F. Siew, T. Ireland-Hay, G.T. Stephens, J.J.J. Chen, M.P. Taylor: Light Met. (Warrendale, PA), pp. 763–69, 2005.

  12. 12.

    N.B. Pilling, R.E. Bedworth: J. Inst. Metals, 1923, 29: 529–591.

  13. 13.

    R. Odegard: Ph.D. Thesis, University of Trondhiem, 1986.

  14. 14.

    J.L. Kennedy, T.D. Drysdale, and D.H. Gregory. Green Chem., 2015, 17: 285–290.

  15. 15.

    G. Kresse and J. Hafner. Phys. Rev. B, 1993, 47: 558–561.

  16. 16.

    G. Kresse and J. Hafner. Phys. Rev. B, 1994, 49: 14251–14269.

  17. 17.

    G. Kresse and J. Furthmüller. Computational Materials Science, 1996, 6: 15–50.

  18. 18.

    G. Kresse and J. Furthmüller. Phys. Rev. B, 1996, 54: 11169–11186.

  19. 19.

    P.E. Blöchl. Phys. Rev. B, 1994, 50: 17953–17979.

  20. 20.

    G. Kresse and D. Joubert. Phys. Rev. B, 1999, 59: 1758–1775.

  21. 21.

    J.P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77: 3865–3868.

  22. 22.

    J.P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1997, 78: 1396–1396.

  23. 23.

    A. E. Gheribi, A. Seifitokaldani, P. Wu, P. Chartrand. Journal of Applied Physics, 118: 145101 (2015)

  24. 24.

    A. Seifitokaldani, A.E. Gheribi: Comput. Mater. Sci., 108: 17–26 (2015)

  25. 25.

    A. Seifitokaldani, A. E. Gheribi, M. Dolle, P. Chartrand. Journal of Alloys and Compounds, 662: 240-251. (2016)

  26. 26.

    P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson. J. Appl. Phys., 1998, 84: 4891–4904.

  27. 27.

    D.R. Augood: Light Met. (NY), pp. 413–27, 1980.

  28. 28.

    C.M. Van Vliet. IEEE Trans. Electron Devices, 1993, 40: 1140–7.

  29. 29.

    J. Slotboom, H. de Graaff. Solid-State Electronics, 19: 857–862. (1976)

  30. 30.

    D. Stefanakis and K. Zekentes. Microelectronic Engineering, 2014, 116: 65–71.

  31. 31.

    N. Ashcroft and N. Mermin. Solid State Physics. Saunders College, Philadelphia, 1976.

  32. 32.

    G. Galvagno, A.L. Ferla, F.L. Via, V. Raineri, A. Gasparotto, A. Carnera, and E. Rimini. Semiconductor Science and Technology, 1997, 12: 1433–37.

  33. 33.

    L. Pedesseau, J. Even, M. Modreanu, D. Chaussende, E. Sarigiannidou, O. Chaix-Pluchery, and O. Durand. APL Materials, 2015, 3: 121101.

  34. 34.

    D. Lombard, T. Béhérégaray, B. Féve, J.M. Jolas: Aluminium Pechiney Experience with Graphitized Cathode Blocks. Springer International Publishing, Cham, pp. 773–778 (2016)

  35. 35.

    A. Evans and J. Hutchinson. International Journal of Solids and Structures, 1984, 20: 455–466.

  36. 36.

    V.L. Solozhenko and O.O. Kurakevych. Solid State Communications, 2005, 133: 385–388.

  37. 37.

    C. Ji, Y. Ma, M.-C. Chyu, R. Knudson, and H. Zhu. Journal of Applied Physics, 2009, 106: 083511.

  38. 38.

    G. Grimvall. Thermophysical Properties of Materials: Selected Topics in Solid State Physics. North-Holland, Amsterdam (1986)

  39. 39.

    Z.-G. Yang, P.Y. Hou: Mater. Sci. Eng. A, 391: 1-9 (2005)

Download references

Acknowledgments

This research was supported by funds from the Natural Sciences and Engineering Research Council of Canada (NSERC), Rio Tinto Aluminium and Carbone Savoie. Computations were made on the supercomputer Briaré at the Université de Montréal managed by Calcul-Québec and Compute Canada.

Author information

Correspondence to Aïmen E. Gheribi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 4, 2019.

Appendix

Appendix

A.1 Al4C3-SiC Phase Diagram

See Figure A.1.

Fig. A.1
figure9

Al4C3-SiC phase diagram calculated via the FactSage software and the FTOxCN database

A.2 Solubility of Si in Al4C3 Layer

See Figure A.2.

Fig. A.2
figure10

Calculated solubility of Si in the Al4C3 layer at 1233 K as a function of Si dissolved in the liquid aluminium pad. The calculations were performed via the FactSage software and FTOxCN database.[9]

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gheribi, A.E., Fini, M.F., Rivoaland, L. et al. Cathodic Wear by Delamination of the Al4C3 Layer During Aluminium Electrolysis. Metall and Materi Trans B 51, 161–172 (2020). https://doi.org/10.1007/s11663-019-01731-9

Download citation