An Innovative Process for Production of Ti Metal Powder via TiSx from TiN

  • Eltefat Ahmadi
  • Ryosuke O. SuzukiEmail author


This work presents a new processing concept for production of Ti metal powder from FeTiO3via TiN and TiSx. Because FeTiO3 can be converted to TiN by the carbothermal reduction and nitridation method, TiN was taken as the starting material. Ti2.45S4 and TiS2 powders were completely formed from TiN at 1473 K (1200 °C) in 3.6 and 10.8 ks, respectively. Either CS2 or S2 gas could be used for the sulfurization process. The sulfides were then converted to α-Ti metal powders by the Ono and Suzuki (OS) process in molten CaCl2 with a small addition of CaS. Employing S2 gas in the sulfurization step remarkably reduced the carbon contamination to 0.01 and 0.1 wt pct C after the sulfurization and reduction processes, respectively. α-Ti powders with spherical morphology and foil-like Ti sheets containing less than 0.15 wt pct O were obtained from the electrochemical reduction in molten CaCl2-0.5 mol pct CaS. The approach applied here offers a promising strategy to design an innovative process for production of commercial grade Ti powders via TiSx and TiN from FeTiO3 by nitridation, sulfurization, and OS processes.



The financial support from Grants-in-Aid for Scientific Research (KAKENHI 17H03434 and 18F18054), a Research Grant from the Japan Mining Industry Association, a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship (P18054), and the kind support from the International Affairs of Engineering, Hokkaido University, are gratefully acknowledged. The authors also express their appreciation to Messrs. Hiromi Noguchi, Takumi Kaneko, Yuta Yashima, and Yasushi Haraguchi for their technical assistance in the experiments.


  1. 1.
    1. W. Kroll: Trans. Electrochem Soc., 1940, vol. 78, pp. 35–47.CrossRefGoogle Scholar
  2. 2.
    2. E. Ahmadi, S.A. Rezan, N. Baharun, S. Ramakrishnan, A. Fauzi, and G. Zhang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2354–66.CrossRefGoogle Scholar
  3. 3.
    3. R.O. Suzuki, K. Teranuma, and K. Ono: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 287–95.CrossRefGoogle Scholar
  4. 4.
    4. R.O. Suzuki and S. Inoue: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 277–85.CrossRefGoogle Scholar
  5. 5.
    5. C. Schwandt, G.R. Doughty, and D.J. Fray: Key Eng. Mater., 2010, vol. 436, pp. 13–25.CrossRefGoogle Scholar
  6. 6.
    6. K. Ono and R.O. Suzuki: JOM, 2002, vol. 54, pp. 59–61.CrossRefGoogle Scholar
  7. 7.
    7. E. Ahmadi, A. Fauzi, H. Hussin, N. Baharun, K.S. Ariffin, and S.A. Rezan: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 444–54.CrossRefGoogle Scholar
  8. 8.
    E. Ahmadi, SA. Hamid, H.B. Hussin, N.B. Baharun, S. Ramakrishnan, K.S.B. Ariffin, and M.N.A. Fauzi: INROADSInt. J. Jaipur Nat. Univ., 2016, vol. 5, pp. 11–16.Google Scholar
  9. 9.
    9. E. Ahmadi, N.I. Shoparwe, N. Ibrahim, S.A.R. Sheikh Abdul Hamid, N. Baharun, K.S. Ariffin, H. Hussin, and M.N. Ahmad Fauzi: Extraction 2018, Springer International Publishing, Cham, 2018, pp. 1383–96.Google Scholar
  10. 10.
    10. E. Ahmadi, Y. Yashima, R.O. Suzuki, and S.A. Rezan: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1808–21.CrossRefGoogle Scholar
  11. 11.
    11. C. Doblin, A. Chryss, and A. Monch: Key Eng. Mater., 2012, vol. 520, pp. 95–100.CrossRefGoogle Scholar
  12. 12.
    12. C. Doblin, D. Freeman, and M. Richards: Key Eng. Mater., 2013, vol. 551, pp. 37–43.CrossRefGoogle Scholar
  13. 13.
    13. V. Duz, M. Matviychuk, A. Klevtsov, and V. Moxson: Met. Powder Rep., 2017, vol. 72, pp. 30–38.CrossRefGoogle Scholar
  14. 14.
    V. Duz, V.S. Moxson, A.G. Klevtsov, and V. Sukhoplyuyev: Titanium USA 2013 Conf. Proc., International Titanium Association (ITA), Las Vegas, NV, 2013, p. 189.Google Scholar
  15. 15.
    15. Q. Wang, J. Song, J. Wu, S. Jiao, J. Hou, and H. Zhu: Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 8086–91.CrossRefGoogle Scholar
  16. 16.
    J.C. Withers, J. Laughlin, and R.O. Loutfy: Light Metals 2007, TMS Annual Meeting, Orlando, FL, 2007, TMS, Warrendale, PA, 2007.Google Scholar
  17. 17.
    17. J.C. Withers, R.O. Loutfy, and J.P. Laughlin: Mater. Technol., 2007, vol. 22, pp. 66–70.CrossRefGoogle Scholar
  18. 18.
    18. D. Jewell, S. Jiao, M. Kurtanjek, and D.J. Fray: Titanium 2012, International Titanium Association, Atlanta, GA, 2012.Google Scholar
  19. 19.
    19. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.CrossRefGoogle Scholar
  20. 20.
    20. K.S. Mohandas and D.J. Fray: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 685–99.CrossRefGoogle Scholar
  21. 21.
    21. S. Jiao and D.J. Fray: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 74–79.CrossRefGoogle Scholar
  22. 22.
    22. H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: Electrochemistry, 2018, vol. 86, pp. 82–87.CrossRefGoogle Scholar
  23. 23.
    23. C. Schwandt and D.J. Fray: Electrochim. Acta, 2005, vol. 51, pp. 66–76.CrossRefGoogle Scholar
  24. 24.
    24. T. Matsuzaki, R.O. Suzuki, S. Natsui, T. Kikuchi, and M. Ueda: Mater. Trans., 2019, vol. 60, pp. 411–15.CrossRefGoogle Scholar
  25. 25.
    25. T. Matsuzaki, R.O. Suzuki, S. Natsui, T. Kikuchi, and M. Ueda: Mater. Trans., 2019, vol. 60, pp. 386–90.CrossRefGoogle Scholar
  26. 26.
    26. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: ECS Trans., 2016, vol. 75, pp. 507–15.CrossRefGoogle Scholar
  27. 27.
    27. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki: Mater. Trans., 2017, vol. 58, pp. 367–70.CrossRefGoogle Scholar
  28. 28.
    28. S.K. Basu and M. Taniguchi: Thermochim. Acta, 1986, vol. 109, pp. 253–65.CrossRefGoogle Scholar
  29. 29.
    29. R.O. Suzuki, N. Suzuki, Y. Yashima, S. Natsui, and T. Kikuchi: Extraction 2018, Springer International Publishing, Cham, 2018, pp. 763–71.Google Scholar
  30. 30.
    30. T. Kikuchi, M. Yoshida, S. Matsuura, S. Natsui, E. Tsuji, H. Habazaki, and R.O. Suzuki: J. Phys. Chem. Solids, 2014, vol. 75, pp. 1041–48.CrossRefGoogle Scholar
  31. 31.
    31. R.O. Suzuki: J. Phys. Chem. Solids, 2005, vol. 66, pp. 461–65.CrossRefGoogle Scholar
  32. 32.
    32. M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii, and A. Yamamoto: Acta Mater., 2012, vol. 60, pp. 7232–40.CrossRefGoogle Scholar
  33. 33.
    A. Roine: “Outokumpu HSC Chemistry for Windows, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Outokumpu Research Oy, Pori, HSC Ver. 8.08, 2014.Google Scholar
  34. 34.
    34. W. Hofmann and A. Schrader: Arch. Eisenhuettenwes., 1936, vol. 10, pp. 65–66.Google Scholar
  35. 35.
    35. L.J. Norrby and H.F. Franzen: J. Solid State Chem., 1970, vol. 2, pp. 36–41.CrossRefGoogle Scholar
  36. 36.
    36. J.R. Dahn, W.R. McKinnon, R.R. Haering, W.J.L. Buyers, and B.M. Powell: Can. J. Phys., 1980, vol. 58, pp. 207–13.CrossRefGoogle Scholar
  37. 37.
    37. H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000, p. 742.Google Scholar
  38. 38.
    38. R.O. Suzuki, N. Noguchi, Y. Haraguchi, S. Natsui, and T. Kikuchi: ECS Trans., 2018, vol. 86, pp. 45–53.CrossRefGoogle Scholar
  39. 39.
    39. E. Long, S. O’Brien, E.A. Lewis, E. Prestat, C. Downing, C.S. Cucinotta, S. Sanvito, S.J. Haigh, and V. Nicolosi: NPJ 2D Mater. Appl., 2017, vol. 1, pp. 1–9.CrossRefGoogle Scholar
  40. 40.
    40. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free: Int. Mater. Rev., 2018, vol. 63, pp. 407–59.CrossRefGoogle Scholar
  41. 41.
    41. O. Kanou, N. Fukada, and S. Takenaka: J. Jpn. Soc. Powder Powder Metall., 2017, vol. 64, pp. 295–99.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Division of Materials Science and Engineering, Faculty of EngineeringHokkaido UniversityKita-Ku, SapporoJapan

Personalised recommendations