Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition

Abstract

Effects of slag composition and alloy content as well as temperature on the deoxidation and desulfurization of Inconel 718 superalloy by CaF2-CaO-Al2O3-MgO-TiO2 ESR-type slag without the addition of a deoxidizer were systematically investigated by laboratory-scale experiments and the developed mass transfer model. The model predictions were verified through comparison with experimental results in a double-layer crucible. The results showed that the oxygen content decreased with an increase of CaO, MgO and CaF2 content in the slag at 1773 K, and CaO has a great influence on the deoxidation of Inconel 718 alloy compared with MgO and CaF2 in slag, which was responsible for the decrease in equilibrium content of sulfur in the Inconel 718 alloy. The total oxygen and sulfur content decreased from 33.2 and 20 ppm in master alloys to about 10 and 6 ppm in alloy ingots at 1773 K, respectively. Properly increasing the Al and Ti content only lowered the oxygen and sulfur content in the nickel-based alloy to a limited extent when satisfying the mechanical properties of the Inconel 718 alloy. The interfacial oxygen content increased with increasing temperature, giving rise to a decrease in the desulfurization ratio \( \left( {{{[{\text{pct S}}]_{t = t} } \mathord{\left/ {\vphantom {{[{\text{pct S}}]_{t = t} } {[{\text{pct S}}]_{t = 0} }}} \right. \kern-0pt} {[{\text{pct S}}]_{t = 0} }}} \right) \). These results show that the lower temperature favored desulfurization of the nickel-based alloy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A. Kracke and A. Allvac. Superalloys, the most successful alloy system of modern times-past, present and future. In 7th international symposium on superalloy 718 and derivatives. The Minerals, Metals and Materials Society, 2010, pp. 13–50.

  2. 2.

    2. E.A. Loria: JOM, 1992, vol. 44, pp. 33-36.

  3. 3.

    3. M. Rahman, W.K.H. Seah and T.T. Teo: J. Mater. Process. Tech., 1997, vol. 63, pp. 199-204.

  4. 4.

    4. G.W. Meetham: J. Mater. Sci., 1991, vol. 26, pp. 853-60.

  5. 5.

    5. A. Thomas, M. El-Wahabi, J.M. Cabrera and J.M. Prado: J. Mater. Process. Tech., 2006, vol. 177, pp. 469-72.

  6. 6.

    C. Briant: Impurities in Engineering Materials: Impact, Reliability, and Control. Marcel Dekker, Inc., New York (2017).

  7. 7.

    7. W. Wallace, R.T. Holt and T. Terada: Metallography, 1973, vol. 6, pp. 511-26.

  8. 8.

    8. E.P. Whelan and M.S. Grzedzielski: Met. Technol., 1974, vol. 1, pp. 186-90.

  9. 9.

    9. W.R. Sun, S.R. Guo, D.Z. Lu and Z.O. Hu: Mater. Lett., 1997, vol. 31, pp. 195-200.

  10. 10.

    10. C.L. White, J.H. Schneibel and R.A. Padgett: Metall. Trans. A, 1983, vol. 14, pp. 595-610.

  11. 11.

    11. H.W. Song, S.R. Guo and Z.Q. Hu: Acta Metall. Sin., 1999, vol. 35, pp. 573-76.

  12. 12.

    12. R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1-24.

  13. 13.

    13. J. Alexander: Mater. Sci. Tech., 1985, vol. 1, pp. 167-70.

  14. 14.

    14. J.P. Niu, X.F. Sun, T. Jin, K.N. Yang, H.R. Guan and Z.Q. Hu: Mater. Sci. Tech., 2003, vol. 19, pp. 435-39.

  15. 15.

    15. W. Bian, H. Zhang, M. Gao, Q. Li, J. Li, T. Tao and H. Zhang: Vacuum, 2018, vol. 152, pp. 57-64.

  16. 16.

    Q. Li, H. Zhang, M. Gao, J. Li, T. Tao and H. Zhang: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 696-703.

  17. 17.

    17. H.B. Bai, H.R. Zhang, J.F. Weng, B. Kong and H. Zhang: Mater. Res. Innovations, 2014, vol. 18, pp. 357-62.

  18. 18.

    18. J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan and Z.Q. Hu: Rare Metal Mat. Eng., 2003, vol. 32, pp. 63-66.

  19. 19.

    20. J. Li, H. Zhang, M. Gao, Q. Li, J. Zhang, B. Yang and H. Zhang: Rare Metals, 2018, https://doi.org/10.1007/s12598-018-1103-1.

  20. 20.

    21. A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563-74.

  21. 21.

    22. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig and J. Bohacek: Steel Res. Int., 2018, vol. 89, pp. 1700100.

  22. 22.

    23. A.K. Vaish, G.V.R. Iyer, P.K. De, B.A. Lakra, A.K. Chakrabarti and P. Ramachandrarao: J. Metall. Mater. Sci., 2000, vol. 42, pp. 11-29.

  23. 23.

    Z.H. Jiang, Y.W. Dong, X. Geng and F.B. Liu: Electroslag Metallurgy. Science Press, Beijing, 2015.

  24. 24.

    A. Mitchell: J. Vac. Sci. Technol., 1970, vol. 6, pp. S63-73.

  25. 25.

    S. Duan, X. Shi, F. Wang, M. Zhang, Y. Sun, H. Guo and J. Guo: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3055-71.

  26. 26.

    27. W.E. Anable, R.H. Nafziger and D.C. Robinson: JOM-US, 1973, vol. 25, pp. 55-61.

  27. 27.

    28. H. Miska and M. Wahlster: Arch. Eisenhuttenwes., 1973, vol. 44, pp. 81-85.

  28. 28.

    29. N.Q. Minh and T.B. King: Metall. Trans. B, 1979, vol. 10, pp. 623-29.

  29. 29.

    30. M. Kato, K. Hasegawa, S. Nomura and M. Inouye: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 618-27.

  30. 30.

    31. M. Eissa and A. EI Mohammadi: Steel Res. Int., 1998, vol. 69, pp. 413-17.

  31. 31.

    32. T. Mattar, K. El-Fawakhry, H. Halfa and M. Eissa: Steel Res. Int., 2008, vol. 79, pp. 691-97.

  32. 32.

    33. D. Hou, Z. Jiang, Y. Dong, Y. Li, W. Gong and F. Liu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1885-97.

  33. 33.

    34. Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang and B. Li: Steel Res. Int., 2017, vol. 88, pp. 1700058.

  34. 34.

    35. Y. Liu, X. Wang, G. Li, Q. Wang, Z. Zhang and B. Li: Vacuum, 2018, vol. 154, pp. 351-58.

  35. 35.

    36. R.S.E. Schneider, M. Molnar, S. Gelder, G. Reiter and C. Martinez: Steel Res. Int., 2018, vol. 89, pp. 1800161.

  36. 36.

    37. Q. Wang, Z. He, G. Li, B. Li, C. Zhu and P. Chen: Int. J. Heat Mass Tran., 2017, vol. 104, pp. 943-51.

  37. 37.

    38. Q. Wang, G. Li, Z. He and B. Li: Appl. Therm. Eng., 2017, vol. 114, pp. 874-86.

  38. 38.

    39. Q. Wang, Y. Liu, Z. He, G. Li and B. Li: ISIJ Int., 2017, vol. 57, pp. 329-36.

  39. 39.

    40. Q. Wang, Y. Liu, F. Wang, G. Li, B. Li and W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2649-63.

  40. 40.

    41. X.C. Chen, F. Wang, C.B. Shi, H. Ren and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 252-57.

  41. 41.

    42. X. Chen, C. Shi, H. Guo, F. Wang, H. Ren and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1596-1607.

  42. 42.

    J. Morscheiser, L. Thönnessen, B. Friedrich and M. Recycling. Sulphur Control in Nickel-Based Superalloy Production. The 6th European metallurgical conference EMC 2011. Duesseldorf, 2011.

  43. 43.

    44. S. Duan, X. Shi, F. Wang, M. Zhang, B. Li, W. Yang, H. Guo and J. Guo: J. Mater. Res. Technol., 2019, vol. 8, pp. 2508-16.

  44. 44.

    45. J.X. Dong, X.S. Xie and R.G. Thompson: Metall. Mater. Trans. A., 2000, vol. 31, pp. 2135-44.

  45. 45.

    C. Wagner and J.F. Elliott: The physical chemistry of steelmaking. Wiley, New York, 1958.

  46. 46.

    H.J. Guo: Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.

  47. 47.

    48. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1706-22.

  48. 48.

    49. S.J. Li, G.G. Cheng, L. Yang, L. Chen, Q.Z. Yan and C.W. Li: ISIJ Int., 2017, vol. 57, pp. 713-22.

  49. 49.

    50. D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1400-09.

  50. 50.

    C. Wagner: Thermodynamics of Alloys. Addison-Wesley Press, Reading, 1952

  51. 51.

    52. Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1465-74.

  52. 52.

    53. Y. Kang, M. Kim, S. Lee, J. Cho, M. Park and H. Lee: Metall. Mater. Trans. B, 2013, vol. 44, pp. 309-16.

  53. 53.

    Z.B. Li: Electroslag Metallurgy Theory and Practice. Metallurgical Industry Press, Beijing, 2010.

  54. 54.

    55. K. Mukai, Z. Li and K.C. Mills: Metall. Mater. Trans. B, 2005, vol. 36, pp. 255-62.

  55. 55.

    56. J.G. Kang, J.H. Shin, Y. Chung and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2123-35.

  56. 56.

    57. D. Hou, Z. Jiang, T. Qu, D. Wang, F. Liu and H. Li: J. Iron Steel Res. Int., 2019, vol. 26, pp. 20-31.

  57. 57.

    58. D. Park, I. Jung, P.C.H. Rhee and H. Lee: ISIJ Int., 2004, vol. 44, pp. 1669-78.

  58. 58.

    59. M. Valdez, G.S. Shannon and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450-57.

  59. 59.

    60. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.

  60. 60.

    61. Y. Zhang, W. Chen, Y. Yang and A. Mclean: ISIJ Int., 2017, vol. 57, pp. 322-28.

  61. 61.

    62. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3225-30.

  62. 62.

    63. E. Andersson and D. Sichen: Steel Res. Int., 2010, vol. 80, pp. 544-51.

  63. 63.

    C. Shi, J. Cho, D. Zheng and J. Li: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 627-36.

  64. 64.

    65. J.H. Park and D.J. Min: Steel Res. Int., 2004, vol. 75, pp. 807-11.

  65. 65.

    66. D. Roy, P.C. Pistorius and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1086-94.

  66. 66.

    67. F. Patsiogiannis, U.B. Pal and R.S. Bogan: Can. Metall. Quart., 1994, vol. 33, pp. 305-12.

  67. 67.

    68. M. Ohta, T. Kubo and K. Morita: Tetsu-to-Hagane, 2003, vol. 89, pp. 742-49.

  68. 68.

    69. S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh and M. Hino: ISIJ Int., 2004, vol. 44, pp. 1810-16.

  69. 69.

    70. Y. Kawai, R. Nakao and K. Mori: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 509-14.

  70. 70.

    71. S. Li, G. Cheng, Z. Miao, L. Chen, C. Li and X. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148-56.

  71. 71.

    72. R.J. Pomfret and P. Grieveson: Can. Metall. Quart., 1983, vol. 22, pp. 287-99.

  72. 72.

    C.Z. Wang: Research Methods in Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.

  73. 73.

    74. S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo and J. Guo: Sci. Rep., 2018, vol. 8, pp. 5232.

Download references

Acknowledgments

The authors are thankful for the support from the National Natural Science Foundation of China (nos. U1560203, 51704021 and 51274031), Fundamental Research Funds for the Central Universities (FRF-TP-16-079A1) and Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB), China.

Author information

Correspondence to Han-Jie Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 23, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, S., Shi, X., Zhang, M. et al. Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition. Metall and Materi Trans B 51, 353–364 (2020). https://doi.org/10.1007/s11663-019-01729-3

Download citation