We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

Rapid and Simple Identification of Free Magnesia in Steelmaking Slag Used for Road Construction Using Cathodoluminescence

  • 53 Accesses

  • 3 Citations

Abstract

Reuse of steelmaking slags is important for the effective use of natural resources. Free magnesia (f-MgO) in steelmaking slag may cause serious problems because of a hydration reaction followed by expansion when it is reused for road construction. We present a promising method to identify f-MgO that causes volume expansion rapidly by investigating cathodoluminescence (CL) images and spectra of a steelmaking slag sample. f-MgO emitted red–orange luminescence from a peak at 755 nm. The mineral phases, 3CaO·SiO2 and 2CaO·SiO2, emitted red and yellow luminescence from peaks at 720  and 590 nm, respectively. No luminescence of FeO and 2CaO·Fe2O3 was detected. f-MgO changed its composition in the slag sample that was immersed in hot (70 °C) water for a week. f-MgO that was responsible for the volume expansion (combined content of FeO and MnO below 30 mass pct) retained a red–orange luminescence, whereas the other f-MgO lost luminescence. The CL intensity of the f-MgO that retained luminescence was more than 10 times larger than that of 3CaO·SiO2 and 2CaO·SiO2. Therefore, we can distinguish f-MgO that causes volume expansion by detecting the intense red–orange luminescence from the peak at 755 nm in the CL image within a few seconds.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    1. Y. Jiang, T.-C. Ling, C. Shi and S.-Y. Pan: Resour. Conserv. Recycl., 2018, vol. 136, pp. 187-197.

  2. 2.

    2. J. Li, S.Y. Pan, H. Kim, J.H. Linn and P.C. Chiang: J. Environ. Manage., 2015, vol. 162, pp. 158-70.

  3. 3.

    3. S.-Y. Pan, R. Adhikari, Y.-H. Chen, P. Li and P.-C. Chiang: J. Clean Prod., 2016, vol. 137, pp. 617-631.

  4. 4.

    4. İ. Yüksel: Environ. Dev. Sustain., 2016, vol. 19, pp. 369-384.

  5. 5.

    5. G. Wang, Y. Wang and Z. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555-560.

  6. 6.

    6. C. Kambole, P. Paige-Green, W.K. Kupolati, J.M. Ndambuki and A.O. Adeboje: Constr. Build. Mater., 2017, vol. 148, pp. 618-631.

  7. 7.

    7. S. Chatterji: Cem. Concr. Res., 1995, vol. 25, pp. 51-56.

  8. 8.

    8. L.F. Amaral, I.R. Oliveira, P. Bonadia, R. Salomão and V.C. Pandolfelli: Ceram. Int., 2011, vol. 37, pp. 1537-1542.

  9. 9.

    Juckes LM (2003) Trans Inst Min Metall C 112:177-197

  10. 10.

    Japanese Industrial Standards (2018) JI Standards. Japanese Industrial Standards, Tokyo

  11. 11.

    11. F.M. Lea: The Chemistry of Cement and Concrete. 3rd ed., Edward Arnold, Glasgow, 1970, pp. 111-112.

  12. 12.

    12. K. Hanada, M. Inose, S. Sato, K. Watanabe and K. Fujimoto: Tetsu-to-Hagané, 2016, vol. 102, pp. 24-28.

  13. 13.

    13. M. Kato, K. Tsukagoshi, M. Aimoto, S. Saito and M. Shibukawa: ISIJ Int., 2018, vol. 58, pp. 1834-1839.

  14. 14.

    14. K. Kanehashi and M. Aimoto: Tetsu-to-Hagané, 2013, vol. 99, pp. 543-551.

  15. 15.

    15. H. Tsuneda, S. Imashuku and K. Wagatsuma: Tetsu-to-Hagané, 2019, vol. 105, pp. 30-37.

  16. 16.

    16. S. Imashuku, K. Ono, R. Shishido, S. Suzuki and K. Wagatsuma: Mater. Charact., 2017, vol. 131, pp. 210-216.

  17. 17.

    17. S. Imashuku, K. Ono and K. Wagatsuma: X-Ray Spectrom., 2017, vol. 46, pp. 131-135.

  18. 18.

    18. S. Imashuku, K. Ono and K. Wagatsuma: Microsc. Microanal., 2017, vol. 23, pp. 1143-1149.

  19. 19.

    19. S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2868-2874.

  20. 20.

    S. Imashuku and K. Wagatsuma: Surf. Interface Anal., 2019, vol. 51, pp. 31-34.

  21. 21.

    S. Imashuku and K. Wagatsuma: X-Ray Spectrom., 2019, vol. 48, pp. 522-526.

  22. 22.

    S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B, 2019. https://doi.org/10.1007/s11663-019-01732-8.

  23. 23.

    23. S. Imashuku and K. Wagatsuma: Corros. Sci., 2019, vol. 154, pp. 226-230.

  24. 24.

    24. W.E. Lee, S. Zhang and M. Karakus: J. Mater. Sci., 2004, vol. 39, pp. 6675-6685.

  25. 25.

    Musante L, Martorello LF, Galliano PG, Cavalieri AL, Tomba Martinez AG (2012) Ceram Int 38:4035-4047

  26. 26.

    26. M. Karakus, M.D. Crites and M.E. Schlesinger: J. Microsc., 2000, vol. 200, pp. 50-58.

  27. 27.

    27. A. Niida, K. Okohira, A. Tanaka and T. Kai: Tetsu-to-Hagané, 1983, vol. 69, pp. 42-50.

  28. 28.

    28. M. Gautier, J. Poirier, F. Bodénan, G. Franceschini and E. Véron: Int. J. Miner. Process., 2013, vol. 123, pp. 94-101.

  29. 29.

    29. C. Liu, M. Guo, L. Pandelaers, B. Blanpain and S. Huang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3237-3240.

  30. 30.

    30. S.-M. Liang and R. Schmid-Fetzer: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 4768-4785.

  31. 31.

    31. T. Kato, G. Okada and T. Yanagida: J. Ceram. Soc. Jpn., 2016, vol. 124, pp. 559-563.

  32. 32.

    Gaft M, Reisfeld R, Panczer G (2005) Luminescence Spectroscopy of Minerals and Materials. Springer, Berlin

  33. 33.

    33. K. Ramseyer and J. Mullis: Geologic Application of Cathodoluminescence of Silicates. Springer, Berlin, 2000, pp. 177-191.

  34. 34.

    34. R. Dai, C. Tong, Y. Zhu, C. Xu, L. Yang and Y. Li: Opt. Mater., 2018, vol. 85, pp. 32-40.

  35. 35.

    35. Y. Sato, H. Kato, M. Kobayashi, T. Masaki, D.H. Yoon and M. Kakihana: Angew. Chem. Int. Ed. Engl., 2014, vol. 53, pp. 7756-9.

  36. 36.

    36. Z. Mao, Z. Lu, J. Chen, B.D. Fahlman and D. Wang: J. Mater. Chem. C, 2015, vol. 3, pp. 9454-9460.

  37. 37.

    37. P. Wu, G. Eriksson, A.D. Pelton and M. Blander: ISIJ Int., 1993, vol. 33, pp. 26-35.

  38. 38.

    38. P. Wu, G. Eriksson and A.D. Pelton: J. Am. Ceram. Soc., 1993, vol. 76, pp. 2065-2075.

  39. 39.

    39. A.S. Marfunin: Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer-Verlag, Berlin, 1979.

  40. 40.

    40. D. Habermann, R.D. Neuser and D.K. Richter: Quantitative High Resolution Spectral Analysis of Mn 2+in Sementary Calcite. Springer, Berlin, 2000, pp. 331-358.

  41. 41.

    41. H. Suito, T. Yokomaku, Y. Hayashida and Y. Takahashi: Tetsu-to-Hagané, 1977, vol. 63, pp. 2316-2325.

Download references

Acknowledgments

This study was supported by JSPS KAKENHI (Grant Number 17H03435).

Author information

Correspondence to Susumu Imashuku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 26, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 687 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S., Tsuneda, H. & Wagatsuma, K. Rapid and Simple Identification of Free Magnesia in Steelmaking Slag Used for Road Construction Using Cathodoluminescence. Metall and Materi Trans B 51, 27–34 (2020). https://doi.org/10.1007/s11663-019-01724-8

Download citation