Advertisement

Metallurgical and Materials Transactions B

, Volume 51, Issue 1, pp 124–139 | Cite as

X-ray Radioscopic Visualization of Bubbly Flows Injected Through a Top Submerged Lance into a Liquid Metal

  • Megumi AkashiEmail author
  • Olga Keplinger
  • Natalia Shevchenko
  • Sten Anders
  • Markus A. Reuter
  • Sven Eckert
Article
  • 167 Downloads

Abstract

We present an experimental study on the formation and behavior of a liquid metal bubbly flow arising from a downward gas injection through a top submerged lance (TSL). A visualization of the bubble dynamics was achieved by the X-ray radiography combined with high-speed imaging. The experiments were carried out in a parallelepiped container (144 × 144 × 12 mm3) using GaInSn, a ternary alloy that is liquid at room temperature. The gas flow rate Qgas was adjusted in a range between 0.033 and 0.1 L/s. Three different injection positions were considered with respect to the submergence depth L. X-ray images allow for a characterization of the flow regimes and provide the properties of the individual bubbles such as size, shape, and trajectory. Formation and entrainment of smaller gas bubbles are observed at the free surface. These small bubbles can be trapped in the fluid for a long time by recirculation vortices. Bubble size distributions are determined for different Qgas. The bubble detachment frequency is measured as a function of Qgas and L. The results are compared with previously published data for water. The X-ray radiography offers an effective method for determining the local void fraction and allows for an estimation of the bubble volume.

Notes

Supplementary material

11663_2019_1720_MOESM1_ESM.mp4 (20.1 mb)
Supplementary material 1 (MP4 20591 kb)
11663_2019_1720_MOESM2_ESM.mp4 (19.9 mb)
Supplementary material 2 (MP4 20412 kb)
11663_2019_1720_MOESM3_ESM.mp4 (18.8 mb)
Supplementary material 3 (MP4 19214 kb)
11663_2019_1720_MOESM4_ESM.mp4 (18.9 mb)
Supplementary material 4 (MP4 19339 kb)

Reference

  1. 1.
    1 J.M. Floyd: Metall. Mater. Trans. B, 2005, vol. 36, pp. 557–75.CrossRefGoogle Scholar
  2. 2.
    2 B.U.N. Igwe, S. Ramachandran, and J.C. Fulton: Metall. Trans., 1973, vol. 4, pp. 1887–94.CrossRefGoogle Scholar
  3. 3.
    3 D. Mazumdar and R.I.L. Guthrie: Metall. Trans. B, 1985, vol. 16, pp. 83–90.CrossRefGoogle Scholar
  4. 4.
    4 M. Iguchi, T. Uemura, H. Yamaguchi, T. Kuranaga, and Z. Morita: ISIJ Int., 1994, vol. 34, pp. 973–9.CrossRefGoogle Scholar
  5. 5.
    5 J. Wang, H. Ooyabu, F. Wang, and M. Iguchi: ISIJ Int., 2011, vol. 51, pp. 1080–5.CrossRefGoogle Scholar
  6. 6.
    A. Gosset, P. Rambaud, P. Planquart, J.-M. Buchlin, E. Robert, L. Guo, D.D. Joseph, Y. Matsumoto, Y. Sommerfeld, and Y. Wang: Xi’an, 2010, pp. 205–10.Google Scholar
  7. 7.
    7 T. Goda, M. Iguchi, Y. Sasaki, and H. Kiuchi: Mater. Trans., 2005, vol. 46, pp. 2461–6.CrossRefGoogle Scholar
  8. 8.
    8 Y.S. Morsi, W. Yang, B.R. Clayton, and N.B. Gray: Can. Metall. Q., 2000, vol. 39, pp. 87–98.CrossRefGoogle Scholar
  9. 9.
    9 C.B. Solnordal, F.R.A. Jorgensen, and R.N. Taylor: Metall. Mater. Trans. B, 1998, vol. 29, pp. 485–492.CrossRefGoogle Scholar
  10. 10.
    10 Y. Pan and D. Langberg: J. Comput. Multiph. Flows, 2010, vol. 2, pp. 151–64.CrossRefGoogle Scholar
  11. 11.
    11 P. Liovic, M. Rudman, and J.-L. Liow: Appl. Math. Model., 2002, vol. 26, pp. 113–40.CrossRefGoogle Scholar
  12. 12.
    12 P. Liovic, J.-L. Liow, and M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225–33.CrossRefGoogle Scholar
  13. 13.
    13 N. Huda, J. Naser, G. Brooks, M.A. Reuter, and R.W. Matusewicz: Metall. Mater. Trans. B, 2010, vol. 41, pp. 35–50.CrossRefGoogle Scholar
  14. 14.
    14 N. Huda, J. Naser, G. Brooks, M.A. Reuter, and R.W. Matusewicz: Metall. Mater. Trans. B, 2012, vol. 43, pp. 39–55.CrossRefGoogle Scholar
  15. 15.
    15 S. Torres and M.A. Barron: Open J. Appl. Sci., 2016, vol. 06, pp. 860–7.CrossRefGoogle Scholar
  16. 16.
    D. Obiso, S. Kriebitzsch, M. Reuter, and B. Meyer (2019) Metall. Mater. Trans. B, 5: 2. DOI: 10.1007/s11663-019-01630-zCrossRefGoogle Scholar
  17. 17.
    17 O. Keplinger, N. Shevchenko, and S. Eckert: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 228, pp. 012009-1–012009-9.CrossRefGoogle Scholar
  18. 18.
    18 O. Keplinger, N. Shevchenko, and S. Eckert: Int. J. Multiph. Flow, 2018, vol. 105, pp. 159–69.CrossRefGoogle Scholar
  19. 19.
    19 T. Vogt, S. Boden, A. Andruszkiewicz, K. Eckert, S. Eckert, and G. Gerbeth: Nucl. Eng. Des., 2015, vol. 294, pp. 16–23.CrossRefGoogle Scholar
  20. 20.
    20 G.N. Oryall and J.K. Brimacombe: Metall. Trans. B, 1976, vol. 7, pp. 391–403.CrossRefGoogle Scholar
  21. 21.
    21 K.G. Davis, G.A. Irons, and R.I.L. Guthrie: Metall. Trans. B, 1978, vol. 9, pp. 721–2.CrossRefGoogle Scholar
  22. 22.
    22 Mukai K., Nakamura T., and Terashima H.: Tetsu–Hagane, 1992, vol. 78, pp. 1682–9.CrossRefGoogle Scholar
  23. 23.
    23 P.K. Iwamasa and R.J. Fruehan: ISIJ Int., 1996, vol. 36, pp. 1319–27.CrossRefGoogle Scholar
  24. 24.
    24 M.C. Baker and R. Bonazza: Exp. Fluids, 1998, vol. 25, pp. 61–8.CrossRefGoogle Scholar
  25. 25.
    25 V.F. Chevrier and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 537–40.CrossRefGoogle Scholar
  26. 26.
    26 Z. Han and L. Holappa: ISIJ Int., 2003, vol. 43, pp. 292–7.CrossRefGoogle Scholar
  27. 27.
    27 Z. Han and L. Holappa: Metall. Mater. Trans. B, 2003, vol. 34, pp. 525–32.CrossRefGoogle Scholar
  28. 28.
    28 S.V. Gnyloskurenko and T. Nakamura: Mater. Trans., 2003, vol. 44, pp. 2298–302.CrossRefGoogle Scholar
  29. 29.
    29 Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, and R. Novakovic: J. Chem. Eng. Data, 2014, vol. 59, pp. 757–63.CrossRefGoogle Scholar
  30. 30.
    30 K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, P. Gardin, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2015, vol. 46, pp. 700–710.CrossRefGoogle Scholar
  31. 31.
    C. Tomasi and R. Manduchi: in Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Narosa Publishing House, Bombay, India, 1998, pp. 839–46.Google Scholar
  32. 32.
    32 D. Bradley and G. Roth: J. Graph. Tools, 2007, vol. 12, pp. 13–21.CrossRefGoogle Scholar
  33. 33.
    33 J. Serra: Signal Process. 1994, vol. 38, pp. 3–11.CrossRefGoogle Scholar
  34. 34.
    34 E. Delnoij, J. Westerweel, N.G. Deen, J.A.M. Kuipers, and W.P.M. van Swaaij: Chem. Eng. Sci., 1999, vol. 54, pp. 5159–71.CrossRefGoogle Scholar
  35. 35.
    35 T. Sanada, M. Watanabe, T. Fukano, and A. Kariyasaki: Chem. Eng. Sci., 2005, vol. 60, pp. 4886–900.CrossRefGoogle Scholar
  36. 36.
    36 L. Liu, O. Keplinger, T. Ma, T. Ziegenhein, N. Shevchenko, S. Eckert, H. Yan, and D. Lucas: Chem. Eng. Sci., 2018, vol. 192, pp. 288–305.CrossRefGoogle Scholar
  37. 37.
    37 L. Liu, O. Keplinger, T. Ziegenhein, N. Shevchenko, S. Eckert, H. Yan, and D. Lucas: Int. J. Multiph. Flow, 2019, vol. 110, pp. 218–37.CrossRefGoogle Scholar
  38. 38.
    38 M.P. Schwartz: Chem. Eng. Sci., 1990, vol. 45, pp. 1765–77.CrossRefGoogle Scholar
  39. 39.
    39 I. Leibson, E.G. Holcomb, A.G. Cacoso, and J.J. Jacmic: AIChE J., 1956, vol. 2, pp. 300–6.CrossRefGoogle Scholar
  40. 40.
    40 B. Krull, E. Strumpf, O. Keplinger, N. Shevchenko, J. Fröhlich, S. Eckert, and G. Gerbeth: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 228, pp. 012006-1–012006-16.CrossRefGoogle Scholar
  41. 41.
    41 N. Shevchenko, S. Boden, S. Eckert, D. Borin, M. Heinze, and S. Odenbach: Eur. Phys. J. Spec. Top., 2013, vol. 220, pp. 63–77.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Helmholtz Zentrum Dresden-Rossendorf (HZDR)DresdenGermany

Personalised recommendations