Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2912–2929 | Cite as

The Decarburization Kinetics of Metal Droplets in Emulsion Zone

  • Ameya KadrolkarEmail author
  • Neslihan Dogan


A mathematical model has been developed to predict the decarburization rate within individual droplets in the emulsion zone. All the chronological events pertaining to the life cycle of a metal droplet in the emulsion zone like oxygen supply (from slag), external and internal decarburization have been modeled dynamically and validated against experimental data available in open literature. The bloating behavior of metal droplets in the emulsion was represented theoretically by incorporating an escape function dependent on internal CO gas generation. The model is able to predict the onset of bloating and the residence time of metal droplets in the emulsion zone. The residence time of droplet containing 2.6 wt pct C and 0.007 wt pct S is in the range of 10 to 13 seconds. The contribution of decarburization rate in the emulsion zone to the overall decarburization rate is studied using the industrial data reported by Cicutti et al. The model predicts 5 to 75 pct of total decarburization takes place in the emulsion zone. It is found that the extent of decarburization of a metal droplet depends on its initial carbon content rather than its oxygen content for slag containing FeO greater than 10 wt pct.


\( A_{\text{d}} \)

Surface area of a metal droplet, \( \left( {{\text{m}}^{2} } \right) \)

\( a_{\text{FeO}} \)

Raoultian activity of FeO in slag \( \left( - \right) \)

\( e_{j}^{i} \)

First order interaction parameter, of solute \( j \) on \( i \)

\( f_{\text{C}} ,\,f_{\text{O}} , \,f_{\text{S}} \)

Henrian activity coefficients of carbon, oxygen, and sulfur, respectively

\( h_{\text{C}} ,\,\,h_{\text{O}} , \,h_{\text{S}} \)

Henrian activities of carbon, oxygen, and sulfur, respectively

\( J_{\text{C}} , \,J_{\text{FeO}} , \,J_{\text{O}} \)

Flux of carbon, oxygen, and FeO towards metal droplet–slag surface, \( \left(\frac{{\text{moles}}}{{\text{s}}}\right) \)

\( J_{\text{ext}} , \,J_{\text{int}} \)

External and internal CO generation rates respectively, \(\left(\frac{{\text{moles}}}{{\text{s}}}\right) \)

\( J_{\text{esc}} \)

Net escaped moles of CO gas at a given time step, \( \left( {\text{moles}} \right) \)

\( J_s \)

Nucleation rate, \( \left( \frac{\text{nuclei}}{{{\text{m}}^{3} \cdot {\text{s}}}} \right) \)

\( K_{\text{CO}} , K_{\text{FeO}} \)

Equilibrium constants for CO formation and FeO dissociation reaction

\( K_{\text{O}} , \,K_{\text{S}} \)

Adsorption coefficients of the oxygen and sulfur \( \left( - \right) \)

\( k_{\text{s}} , k_{\text{m}} \)

Slag and metal phase mass transfer coefficient, \( \left( \frac{{\text{m}}}{{\text{s}}}\right) \)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {k} , \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftharpoonup}$}} {k} \)

Forward and backward reaction constants of FeO dissociation reaction \( \left( - \right) \)

\( m_{\text{d}} \)

Mass of metal droplet, \( \left( {\text{kg}} \right) \)

\( N_{\text{CO}} \)

Net retained moles of CO gas within a metal droplet, \( \left( {\text{moles}} \right) \)

\( P_{\text{CO}}^{\text{ext}} , \Delta P_{\text{CO}}^{\text{int}} \)

Supersaturation pressure for external (droplet surface) and internal CO gas generation (atm)

\( t_{\text{inst}} , \,t_{\text{res}} , \,\Delta t \)

Instantaneous time, residence time, time step, respectively \( \left( {\text{seconds}} \right) \)

\( \Delta t_{\text{e}} \)

Time interval during which the emulsion zone decarburization is being evaluated

\( V_{o} \)

Initial volume of metal droplet, \( \left( {{\text{m}}^{ 3} } \right) \)

Greek Symbols

\( \theta_{\text{S}} \)

Fraction of surface area poisoned by sulfur \( \left( - \right) \)

\( \rho_{t} , \rho_{\text{d}} \)

Apparent and initial density of metal droplet \( \left( \frac{\text{kg}}{{{\text{m}}^{3} }} \right) \)

\( \rho_{\text{g}} , \rho_{\text{s}} ,\rho_{{{\text{s}} - {\text{g}}}} \)

Densities of gas, slag, and emulsion, respectively \( \left( \frac{\text{kg}}{{{\text{m}}^{3} }} \right) \)

\( \sigma , \sigma_{\text{metal}} \)

Surface tension of metal, \(\left({\frac{{\text{N}}}{{\text{m}}}}\right) \)

\( \phi_{\text{g}} \)

Volume fraction of CO gas in the emulsion

\( \psi \)

Correction factor to the surface tension of the metal \( \left( - \right) \)



Slag–metal interface

s − g




The authors would like to thank Prof. Kenneth Coley, Dr. Kezhuan Gu, and Mr. Tai Xi Zhu for fruitful discussions related to bloated droplet theory. This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), Project Number 20007117 and the McMaster Steel Research Centre (SRC).


  1. 1.
    H.W. Meyer, W.F. Porter, G. Smith, and J. Szekely: J. Met., 1968, vol. 20, pp. 35–42.Google Scholar
  2. 2.
    J. Schoop, W. Resch, and G. Mahn: Ironmak. Steelmak., 1978, vol. 2, pp. 72–9.Google Scholar
  3. 3.
    R.C. Urquhart and W.G. Davenport: Can. Metall. Q., 1973, vol. 12, pp. 507–16.CrossRefGoogle Scholar
  4. 4.
    P. Kozakevitch: J. Miner. Met. Metarials Soc., 1969, vol. 22, pp. 57–68.CrossRefGoogle Scholar
  5. 5.
    D.J. Price: in Process Engineering of Pyrometallurgy Symposium, The Institution of Mining and Metallurgy, London, 1974, pp. 8–15.Google Scholar
  6. 6.
    C. Cicutti, M. Valdez, T. Pérez, R. Donayo, and J. Petroni: Lat. Am. Appl. Res., 2002, vol. 32, pp. 237–40.Google Scholar
  7. 7.
    E.W. Mulholland, G.S. Hazeldean, and M. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632–39.Google Scholar
  8. 8.
    T. Gare and G.S.. Hazeldean: Ironmak. Steelmak., 1981, vol. 4, pp. 169–81.Google Scholar
  9. 9.
    H. Gaye and Riboud.P.V: Metall. Trans. B, 1977, vol. 8, pp. 409–15.CrossRefGoogle Scholar
  10. 10.
    D.J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23, pp. 29–37.CrossRefGoogle Scholar
  11. 11.
    C.L. Molloseau and R.J. Fruehan: Metall. Mater. Trans. B, 2002, vol. 33, pp. 335–44.CrossRefGoogle Scholar
  12. 12.
    E. Chen: Ph.D Thesis, McMaster University, 2011.Google Scholar
  13. 13.
    E. Chen and K.S. Coley: Ironmak. Steelmak., 2010, vol. 37, pp. 541–5.CrossRefGoogle Scholar
  14. 14.
    M.D. Pomeroy: MASc Thesis, McMaster University, 2011.Google Scholar
  15. 15.
    K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B 2017, 48, 1–18.Google Scholar
  16. 16.
    K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2343–53.CrossRefGoogle Scholar
  17. 17.
    K.S. Coley, E. Chen, and M. Pomeroy: in Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David G.C. Robertson, P.J. Mackey, E.J. Grimsey, R.T. Jones, and G.A. Brooks, eds., 2014, pp. 289–302.Google Scholar
  18. 18.
    H. Sun and G. Zhang: in 3rd International Congress on Science ans Technology of Steelmaking, 2005, pp. 257–68.Google Scholar
  19. 19.
    N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1093–101.CrossRefGoogle Scholar
  20. 20.
    N. Dogan: Ph.D Thesis, Swinburne University, 2011.Google Scholar
  21. 21.
    R. Sarkar, P. Gupta, S. Basu, and N.B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46, pp. 961–76.CrossRefGoogle Scholar
  22. 22.
    B. Rout, G. Brooks, M.A. Rhamdhani, Z. Li, F.N. Schrama, and J. Sun: Metall. Mater. Trans. B, 2018, vol. 49, pp. 537–57.CrossRefGoogle Scholar
  23. 23.
    B.K. Rout, G. Brooks, M. Akbar Rhamdhani, Z. Li, F.N.H. Schrama, and A. Overbosch: Metall. Mater. Trans. B, 2018, 49, 1022–33.CrossRefGoogle Scholar
  24. 24.
    G. Brooks, Y. Pan, and K.S. Coley: Metall. Mater. Trans. B, 2005, 36, 525–35.CrossRefGoogle Scholar
  25. 25.
    Subagyo, G. A. Brooks, K.S. Coley, and G. A. Irons: ISIJ Int., 2003, 43, 983–89.Google Scholar
  26. 26.
    G.R. Belton: Met. Trans. B, 1976, 7, 35–42.CrossRefGoogle Scholar
  27. 27.
    Y. Kawai and Y. Shiraishi: Handbook of Physico-Chemical Properties at High Temperatures. Iron and Steel Institute of Japan, Tokyo 1988.Google Scholar
  28. 28.
    M. Hino and K. Ito, eds.: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010.Google Scholar
  29. 29.
    G.K. Sigworth and J.F. Elliot: Met. Sci., 1974, vol. 3, pp. 298–310.CrossRefGoogle Scholar
  30. 30.
    E. Shibata, H. Sun, and K. Mori: Metall. Mater. Trans. B 1999, 30, 279–86.CrossRefGoogle Scholar
  31. 31.
    L.A. Baker, N.A. Warner, and A.E. Jenkins: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 857–64.Google Scholar
  32. 32.
    P.A.A. Distin, G.D.D. Hallett, and F. D. Richardson: J. Iron Steel Inst., 1968, 1, 821–33.Google Scholar
  33. 33.
    N. El Kaddah and D.G.. Robertson: J. Colloid Interface Sci., 1977, vol. 60, pp. 349–60.CrossRefGoogle Scholar
  34. 34.
    K. Mor, H. Sun, K. Ga, V. Sahajwalla, and R.D. Pehlke: ISIJ Int., 1999, vol. 39, pp. 25–33.Google Scholar
  35. 35.
    K. Gao, V. Sahajwalla, H. Sun, C. Wheatley, and R. Dry: ISIJ Int., 2000, vol. 40, pp. 301–8.CrossRefGoogle Scholar
  36. 36.
    H.S. Levine: Metall. Trans. B, 1973, vol. 4, pp. 777–82.CrossRefGoogle Scholar
  37. 37.
    P.G. Bowers, K. Bar-eli, and R.M. Noyes: J. Chem. Soc. Faraday Trans., 1996, vol. 92, pp. 2843–9.CrossRefGoogle Scholar
  38. 38.
    S.D. Lubetkin: Langmuir, 2003, vol. 19, pp. 2575–87.CrossRefGoogle Scholar
  39. 39.
    A.W. Cramb, and I. Jimbo: Steel Res., 1989, 60, 157–65.CrossRefGoogle Scholar
  40. 40.
    W. Cramb, W.R. Graham, and G.R. Belton: Metall. Trans. B. 9, 623–629 (1978)CrossRefGoogle Scholar
  41. 41.
    K. Ogino, S. Hara, T. Miwa, and S. Kimoto: Trans. ISIJ, 1984, vol. 24, pp. 522–31.CrossRefGoogle Scholar
  42. 42.
    R. Hongbin, M. Suzuk, D.R. Poirier, H. Yin, M. Suzuki, and T. Emi: ISIJ Int., 1998, vol. 38, pp. 229–38.CrossRefGoogle Scholar
  43. 43.
    P. Sahoo, T. Debroy, and M.J. McNallan: Metall. Trans. B, 1988, vol. 19, pp. 483–91.CrossRefGoogle Scholar
  44. 44.
    Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 957–71.CrossRefGoogle Scholar
  45. 45.
    F.A. Halden and W.D. Kingery: J. Phys. Chem., 1955, vol. 59, pp. 557–9.CrossRefGoogle Scholar
  46. 46.
    K.S. Coley and T.X. Zhu: Private Communication, Hamilton, Ontario, 2018.Google Scholar
  47. 47.
    Subagyo A., and G.A. Brooks: ISIJ Int., 2002, vol. 42, pp. 1182–4.CrossRefGoogle Scholar
  48. 48.
    C. Cicutti, M. Valdez, T. Perez, J. Petroni, A. Gomez, R. Donayo, and L. Ferro: in 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm- Helsinki, 2000, p. 367.Google Scholar
  49. 49.
    N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1086–92.CrossRefGoogle Scholar
  50. 50.
    P. Wei, M. Sano, M. Hirasawa, and K. Mori: ISIJ Int., 1993, vol. 33, pp. 479–87.CrossRefGoogle Scholar
  51. 51.
    M. Barati and K.S. Coley: Metall. Mater. Trans. B, 2006, vol. 37, pp. 41–49.CrossRefGoogle Scholar
  52. 52.
    M.S. Millman, A. Kapilashrami, M. Bramming, and D. Malmberg: Imphos : Improving Phosphorus Refining. European Union, Luxemborg, 2011.Google Scholar
  53. 53.
    B. Deo and R. Boom: Fundamentals of Steel Making Metallurgy. Pretince Hall International, Upper Saddle River (1993).Google Scholar
  54. 54.
    B.K. Rout, G. Brooks, M.A. Rhamdhani, and Z. Li: Metall. Mater. Trans. B, 2016, 47, 3350–61.CrossRefGoogle Scholar
  55. 55.
    K. Koch, J. Falkus, and R. Bruckhaus: Steel Res. Int., 1993, vol. 64, pp. 15–21.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.McMaster Steel Research CentreMcMaster UniversityHamiltonCanada

Personalised recommendations