Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2780–2793 | Cite as

Experimental Liquidus Study of the Ternary CaO-ZnO-SiO2 System

  • M. ShevchenkoEmail author
  • E. Jak


Phase equilibria of the ternary CaO-ZnO-SiO2 system have been investigated at 1170 °C to 1691 °C for oxide liquid in equilibrium with air and solid oxide phases: tridymite or cristobalite SiO2 (up to two immiscible liquids), pseudowollastonite (CS) CaSiO3, rankinite (C3S2) Ca3Si2O7, dicalcium silicate (C2S) (Ca, Zn)2SiO4, tricalcium silicate (C3S) (Ca, Zn)3SiO5, lime (Ca, Zn)O, zincite (Zn, Ca)O, willemite Zn2SiO4 and hardystonite (melilite) Ca2ZnSi2O7, covering the ranges of concentrations not studied before. High-temperature equilibration on primary phase (silica) or inert metal (platinum) substrates followed by quenching and direct measurement of the Ca, Zn and Si concentrations in the phases with the electron probe X-ray microanalysis (EPMA) has been used to accurately characterize the system. Liquidus phase equilibrium data of the present authors for the CaO-ZnO-SiO2 system are essential to obtain a self-consistent set of parameters of thermodynamic models for all phases.



The authors thank Nyrstar (Australia), Outotec Pty Ltd. (Australia), Aurubis AG (Germany), Umicore NV (Belgium) and Kazzinc Ltd., Glencore (Kazakhstan) and Australian Research Council Linkage Project LP150100783 for their financial support for this research. The authors are grateful to Professor Peter C. Hayes (UQ) for valuable comments and suggestions, to Ms. Suping Huang, Mr. Tony Wei, Mr. Shuyi Lou and Mr. Ryan Wright (UQ) for assistance with conducting experiments and to the Staff of the University of Queensland Centre for Microanalysis and Microscopy (CMM) for their support in maintenance and operation of scanning and electron microprobe facilities in the Centre.


  1. 1.
    1. M. Shevchenko and E. Jak, Metall. Mater. Trans. B, 2018, vol. 49, pp. 159-180.CrossRefGoogle Scholar
  2. 2.
    2. E.R. Segnit, J. Am. Ceram. Soc., 1954, vol. 37, pp. 273-277.CrossRefGoogle Scholar
  3. 3.
    R. Hansson: Phase Equilibria of Zincite Containing Systems Relevant to Zinc/Lead Smelting. Ph.D. Thesis, University of Queensland, 2005.Google Scholar
  4. 4.
    S. Bonner: Phase Equilibria in the CaO–SiO2–ZnO System in Air. Honours Thesis, University of Queensland, 2002.Google Scholar
  5. 5.
    5. L. Xia, Z. Liu and P. Taskinen, J. Am. Ceram. Soc., 2016, vol. 99, pp. 3809-3815.CrossRefGoogle Scholar
  6. 6.
    6. E.N. Bunting, J. Am. Ceram. Soc., 1930, vol. 13, pp. 5-10.CrossRefGoogle Scholar
  7. 7.
    E. Jak: Phase Equilibria to Characterise Lead/Zinc Smelting Slags and Sinters (PbO–ZnO–CaO–SiO2–Fe2O3–FeO). Ph.D. Thesis, University of Queensland, 1995.Google Scholar
  8. 8.
    B. Zhao: Phase Equilibria for Copper Smelting and Lead/Zinc Reduction Slags. Ph.D. Thesis, The University of Queensland, 1999.Google Scholar
  9. 9.
    9. R. Hansson, B. Zhao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2005, vol. 36B, pp. 187-193.CrossRefGoogle Scholar
  10. 10.
    10. L. Xia, Z. Liu and P.A. Taskinen, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 4005-4010.CrossRefGoogle Scholar
  11. 11.
    Rankin GA, Wright FE (1915) Am J Sci 39:1-79Google Scholar
  12. 12.
    12. E.F. Osborn, J. Am. Ceram. Soc., 1943, vol. 26, pp. 321-332.CrossRefGoogle Scholar
  13. 13.
    13. S.L. Meyers, Rock Products, 1930, vol. 33, pp. 78-79.Google Scholar
  14. 14.
    14. E.T. Carlson, Rock Products, 1931, vol. 34, pp. 52-56.Google Scholar
  15. 15.
    Zawadski J, Gotlied J (1940) Bull Intern Acad Polon Sci Classe Sci Math Nat Ser A 1:32-34Google Scholar
  16. 16.
    16. G. Tromel, W. Fix and R. Heinke, Tonindustrie-Zeitung und Keramishe Rundschau, 1969, vol. 93, pp. 1-8.Google Scholar
  17. 17.
    17. J.H. Welch and W. Gutt, J. Am. Ceram. Soc., 1959, vol. 42, pp. 11-15.CrossRefGoogle Scholar
  18. 18.
    18. C.W. Kanolt, Z. Anorg. Chem., 1914, vol. 85, pp. 1-19.CrossRefGoogle Scholar
  19. 19.
    19. E.E. Schumacher, J. Am. Chem. Soc., 1926, vol. 48, pp. 396-405.CrossRefGoogle Scholar
  20. 20.
    20. R.C. Doman, J.B. Barr, R.N. McNally and A.M. Alper, J. Am. Ceram. Soc., 1963, vol. 46, pp. 313-316.CrossRefGoogle Scholar
  21. 21.
    21. V.H. Schenck, M.G. Frohberg and R. Nunninghoff, Arch. Eisenhuttenwes., 1964, vol. 35, pp. 269-277.Google Scholar
  22. 22.
    22. T. Noguchi, M. Mizuno and W.M. Conn, Solar Energy, 1967, vol. 11, pp. 145-152.CrossRefGoogle Scholar
  23. 23.
    Traverse JP, Foex M (1969) High Temp High Press 1:409-427Google Scholar
  24. 24.
    Yamada T, Yoshimura M, Somiya S (1986) J Am Ceram Soc 69:243CrossRefGoogle Scholar
  25. 25.
    25. Z. Panek, Silikaty (Prague), 1979, vol. 23, pp. 97-102.Google Scholar
  26. 26.
    26. V. Shevchenko, L.M. Lopato, A.I. Stegny, G.I. Gerasimyuk, V.S. Dvernyakov and V.V. Pasichnys, DoklAkad Nauk SSSR, Ser A., 1979, vol. 8, pp. 682-685.Google Scholar
  27. 27.
    27. J. Hlavac, Pure Appl. Chem., 1982, vol. 54, pp. 681-8.CrossRefGoogle Scholar
  28. 28.
    Wriedt HA (1985) Bull Alloy Phase Diagr RWTH Aachen 6:337-342CrossRefGoogle Scholar
  29. 29.
    29. D. Manara, R. Boehler, L. Capriotti, A. Quaini, Z. Bao, K. Boboridis, L. Luzzi, A. Janssen, P. Poeml, R. Eloirdi and R.J.M. Konings, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1623-1636.CrossRefGoogle Scholar
  30. 30.
    30. D. Belmonte, G. Ottonello and M.V. Zuccolini, CALPHAD, 2017, vol. 59, pp. 12-30.CrossRefGoogle Scholar
  31. 31.
    J.W. Greig, Am. J. Sci., 5th Ser., 1927, vol. 13, pp. 1-44.Google Scholar
  32. 32.
    32. J.D. Tewhey and P.C. Hess, Phys. Chem. Glasses, 1979, vol. 20, pp. 41-53.Google Scholar
  33. 33.
    33. V.B.M. Hageman, G.J.K. Van den Berg, H.J. Janssen and H.A.J. Oonk, Phys. Chem. Glasses, 1986, vol. 27, pp. 100-106.Google Scholar
  34. 34.
    S. Cheng, M. Shevchenko, and E. Jak: Private Communication, PYROSEARCH, The University of Queensland, 2019.Google Scholar
  35. 35.
    35. K.T. Fehr and A.L. Huber, Am. Mineral., 2001, vol. 86, pp. 21-28.CrossRefGoogle Scholar
  36. 36.
    36. E.J. Essene and D.R. Peacor, Am. Mineral., 1987, vol. 72, pp. 157-66.Google Scholar
  37. 37.
    37. A.L. Huber, S. Heuss-Assbichler, K.T. Fehr and G.D. Bromiley, Am. Mineral., 2012, vol. 97, pp. 739-749.CrossRefGoogle Scholar
  38. 38.
    38. T. Hidayat, H.M. Henao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2012, vol. 43, pp. 1034-1045.CrossRefGoogle Scholar
  39. 39.
    39. E. Jak, P.C. Hayes and H.-G. Lee, Korean Journal of Minerals and Materials Institute (Seoul), 1995, vol. 1, pp. 1-8.Google Scholar
  40. 40.
    E. Jak: in 9th Int. Conf. Molten Slags, Fluxes Salts (MOLTEN12), The Chinese Society for Metals, 2012, p. W077.Google Scholar
  41. 41.
    41. M. Shevchenko and E. Jak, Ceramics International, 2019, vol. 45, pp. 6795-6803.CrossRefGoogle Scholar
  42. 42.
    Llovet X, Pinard PT, Donovan JJ, Salvat F (2012) J Phys D 45:225301CrossRefGoogle Scholar
  43. 43.
    M. Shevchenko, T. Hidayat, P. Hayes, and E. Jak: in Molten 2016, 10th Int. Conf. Molten Slags, Fluxes and Salts, 2016, pp. 1221–28.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Pyrometallurgy Innovation Centre (PYROSEARCH)The University of QueenslandBrisbaneAustralia

Personalised recommendations