Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Experimental Liquidus Study of the Ternary CaO-ZnO-SiO2 System

Abstract

Phase equilibria of the ternary CaO-ZnO-SiO2 system have been investigated at 1170 °C to 1691 °C for oxide liquid in equilibrium with air and solid oxide phases: tridymite or cristobalite SiO2 (up to two immiscible liquids), pseudowollastonite (CS) CaSiO3, rankinite (C3S2) Ca3Si2O7, dicalcium silicate (C2S) (Ca, Zn)2SiO4, tricalcium silicate (C3S) (Ca, Zn)3SiO5, lime (Ca, Zn)O, zincite (Zn, Ca)O, willemite Zn2SiO4 and hardystonite (melilite) Ca2ZnSi2O7, covering the ranges of concentrations not studied before. High-temperature equilibration on primary phase (silica) or inert metal (platinum) substrates followed by quenching and direct measurement of the Ca, Zn and Si concentrations in the phases with the electron probe X-ray microanalysis (EPMA) has been used to accurately characterize the system. Liquidus phase equilibrium data of the present authors for the CaO-ZnO-SiO2 system are essential to obtain a self-consistent set of parameters of thermodynamic models for all phases.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    1. M. Shevchenko and E. Jak, Metall. Mater. Trans. B, 2018, vol. 49, pp. 159-180.

  2. 2.

    2. E.R. Segnit, J. Am. Ceram. Soc., 1954, vol. 37, pp. 273-277.

  3. 3.

    R. Hansson: Phase Equilibria of Zincite Containing Systems Relevant to Zinc/Lead Smelting. Ph.D. Thesis, University of Queensland, 2005.

  4. 4.

    S. Bonner: Phase Equilibria in the CaO–SiO2–ZnO System in Air. Honours Thesis, University of Queensland, 2002.

  5. 5.

    5. L. Xia, Z. Liu and P. Taskinen, J. Am. Ceram. Soc., 2016, vol. 99, pp. 3809-3815.

  6. 6.

    6. E.N. Bunting, J. Am. Ceram. Soc., 1930, vol. 13, pp. 5-10.

  7. 7.

    E. Jak: Phase Equilibria to Characterise Lead/Zinc Smelting Slags and Sinters (PbO–ZnO–CaO–SiO2–Fe2O3–FeO). Ph.D. Thesis, University of Queensland, 1995.

  8. 8.

    B. Zhao: Phase Equilibria for Copper Smelting and Lead/Zinc Reduction Slags. Ph.D. Thesis, The University of Queensland, 1999.

  9. 9.

    9. R. Hansson, B. Zhao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2005, vol. 36B, pp. 187-193.

  10. 10.

    10. L. Xia, Z. Liu and P.A. Taskinen, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 4005-4010.

  11. 11.

    Rankin GA, Wright FE (1915) Am J Sci 39:1-79

  12. 12.

    12. E.F. Osborn, J. Am. Ceram. Soc., 1943, vol. 26, pp. 321-332.

  13. 13.

    13. S.L. Meyers, Rock Products, 1930, vol. 33, pp. 78-79.

  14. 14.

    14. E.T. Carlson, Rock Products, 1931, vol. 34, pp. 52-56.

  15. 15.

    Zawadski J, Gotlied J (1940) Bull Intern Acad Polon Sci Classe Sci Math Nat Ser A 1:32-34

  16. 16.

    16. G. Tromel, W. Fix and R. Heinke, Tonindustrie-Zeitung und Keramishe Rundschau, 1969, vol. 93, pp. 1-8.

  17. 17.

    17. J.H. Welch and W. Gutt, J. Am. Ceram. Soc., 1959, vol. 42, pp. 11-15.

  18. 18.

    18. C.W. Kanolt, Z. Anorg. Chem., 1914, vol. 85, pp. 1-19.

  19. 19.

    19. E.E. Schumacher, J. Am. Chem. Soc., 1926, vol. 48, pp. 396-405.

  20. 20.

    20. R.C. Doman, J.B. Barr, R.N. McNally and A.M. Alper, J. Am. Ceram. Soc., 1963, vol. 46, pp. 313-316.

  21. 21.

    21. V.H. Schenck, M.G. Frohberg and R. Nunninghoff, Arch. Eisenhuttenwes., 1964, vol. 35, pp. 269-277.

  22. 22.

    22. T. Noguchi, M. Mizuno and W.M. Conn, Solar Energy, 1967, vol. 11, pp. 145-152.

  23. 23.

    Traverse JP, Foex M (1969) High Temp High Press 1:409-427

  24. 24.

    Yamada T, Yoshimura M, Somiya S (1986) J Am Ceram Soc 69:243

  25. 25.

    25. Z. Panek, Silikaty (Prague), 1979, vol. 23, pp. 97-102.

  26. 26.

    26. V. Shevchenko, L.M. Lopato, A.I. Stegny, G.I. Gerasimyuk, V.S. Dvernyakov and V.V. Pasichnys, DoklAkad Nauk SSSR, Ser A., 1979, vol. 8, pp. 682-685.

  27. 27.

    27. J. Hlavac, Pure Appl. Chem., 1982, vol. 54, pp. 681-8.

  28. 28.

    Wriedt HA (1985) Bull Alloy Phase Diagr RWTH Aachen 6:337-342

  29. 29.

    29. D. Manara, R. Boehler, L. Capriotti, A. Quaini, Z. Bao, K. Boboridis, L. Luzzi, A. Janssen, P. Poeml, R. Eloirdi and R.J.M. Konings, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1623-1636.

  30. 30.

    30. D. Belmonte, G. Ottonello and M.V. Zuccolini, CALPHAD, 2017, vol. 59, pp. 12-30.

  31. 31.

    J.W. Greig, Am. J. Sci., 5th Ser., 1927, vol. 13, pp. 1-44.

  32. 32.

    32. J.D. Tewhey and P.C. Hess, Phys. Chem. Glasses, 1979, vol. 20, pp. 41-53.

  33. 33.

    33. V.B.M. Hageman, G.J.K. Van den Berg, H.J. Janssen and H.A.J. Oonk, Phys. Chem. Glasses, 1986, vol. 27, pp. 100-106.

  34. 34.

    S. Cheng, M. Shevchenko, and E. Jak: Private Communication, PYROSEARCH, The University of Queensland, 2019.

  35. 35.

    35. K.T. Fehr and A.L. Huber, Am. Mineral., 2001, vol. 86, pp. 21-28.

  36. 36.

    36. E.J. Essene and D.R. Peacor, Am. Mineral., 1987, vol. 72, pp. 157-66.

  37. 37.

    37. A.L. Huber, S. Heuss-Assbichler, K.T. Fehr and G.D. Bromiley, Am. Mineral., 2012, vol. 97, pp. 739-749.

  38. 38.

    38. T. Hidayat, H.M. Henao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2012, vol. 43, pp. 1034-1045.

  39. 39.

    39. E. Jak, P.C. Hayes and H.-G. Lee, Korean Journal of Minerals and Materials Institute (Seoul), 1995, vol. 1, pp. 1-8.

  40. 40.

    E. Jak: in 9th Int. Conf. Molten Slags, Fluxes Salts (MOLTEN12), The Chinese Society for Metals, 2012, p. W077.

  41. 41.

    41. M. Shevchenko and E. Jak, Ceramics International, 2019, vol. 45, pp. 6795-6803.

  42. 42.

    Llovet X, Pinard PT, Donovan JJ, Salvat F (2012) J Phys D 45:225301

  43. 43.

    M. Shevchenko, T. Hidayat, P. Hayes, and E. Jak: in Molten 2016, 10th Int. Conf. Molten Slags, Fluxes and Salts, 2016, pp. 1221–28.

Download references

Acknowledgments

The authors thank Nyrstar (Australia), Outotec Pty Ltd. (Australia), Aurubis AG (Germany), Umicore NV (Belgium) and Kazzinc Ltd., Glencore (Kazakhstan) and Australian Research Council Linkage Project LP150100783 for their financial support for this research. The authors are grateful to Professor Peter C. Hayes (UQ) for valuable comments and suggestions, to Ms. Suping Huang, Mr. Tony Wei, Mr. Shuyi Lou and Mr. Ryan Wright (UQ) for assistance with conducting experiments and to the Staff of the University of Queensland Centre for Microanalysis and Microscopy (CMM) for their support in maintenance and operation of scanning and electron microprobe facilities in the Centre.

Author information

Correspondence to M. Shevchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 18, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, M., Jak, E. Experimental Liquidus Study of the Ternary CaO-ZnO-SiO2 System. Metall and Materi Trans B 50, 2780–2793 (2019). https://doi.org/10.1007/s11663-019-01709-7

Download citation