Metallurgical and Materials Transactions B

, Volume 51, Issue 1, pp 407–411 | Cite as

Comment on the Article “Initial Reactions at the Electrodes of the FFC-Cambridge Process in Molten CaCl2 to Produce Ti” by P.S. Lai, M.L. Hu, Z.F. Qu, L.Z. Gao, C.G. Bai, T.X. Wang, S.F. Zhang, and G.B. Qiu

  • Carsten SchwandtEmail author


A recent publication by Lai et al.[1] presents an assessment of the reaction mechanism in the electro-deoxidation of TiO2 to Ti by means of the FFC-Cambridge process. Therein, Lai et al. put forward an alternative interpretation of the reactions occurring in the early stage of the electro-deoxidation of TiO2 that is in stark contrast to the explanations presented in the pre-existing literature. Their interpretation hinges on the claim that Ti suboxides, such as Ti2O3, are unable to react to CaTiO3 when polarized cathodically in a CaCl2 melt. Herein, this claim is refuted. Several other statements made in the study by Lai et al. as well as in a follow-up study by Hu et al. from the same group[2] are also subjected to a critical analysis and disproven. Overall, the entire new interpretation is shown to be fundamentally flawed.

The FFC-Cambridge process is a comparatively new metallurgical method for the winning of metals and alloys from their pure and mixed oxides.[ 3] In...



  1. 1.
    P.S. Lai, M.L. Hu, Z.F. Qu, L.Z. Gao, C.G. Bai, T.X. Wang, S.F. Zhang, and G.B. Qiu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3403–12.CrossRefGoogle Scholar
  2. 2.
    M.J. Hu, T.X. Ma, L.Z. Gao, P.S. Lai, Z.F. Qu, L.Y. Wen, D.C. Li, S.F. Zhang, and M.L. Hu: Mater. Trans., 2019, vol. 60, pp. 400–04.CrossRefGoogle Scholar
  3. 3.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.CrossRefGoogle Scholar
  4. 4.
    D.J. Fray: Int. Mater. Rev., 2008, vol. 53, pp. 317–25.CrossRefGoogle Scholar
  5. 5.
    K.S. Mohandas: Miner. Process. Extract. Metall., 2013, vol. 122, pp. 195–212.CrossRefGoogle Scholar
  6. 6.
    D.J. Fray and C. Schwandt: Mater. Trans., 2017, vol. 58, pp. 306–12.CrossRefGoogle Scholar
  7. 7.
    C. Schwandt: Miner. Process. Extract. Metall., 2013, vol. 122, pp. 213–18.CrossRefGoogle Scholar
  8. 8.
    C. Schwandt, G.R. Doughty, and D.J. Fray: Key Eng. Mater., 2010, vol. 436, pp. 13–25.CrossRefGoogle Scholar
  9. 9.
    D. Hu, A. Dolganov, M.C. Ma, B. Bhattacharya, M.T. Bishop, and G.Z. Chen: JOM, 2018, vol. 70, pp. 129–37.CrossRefGoogle Scholar
  10. 10.
    C. Schwandt and D.J. Fray: Electrochim. Acta, 2005, vol. 51, pp. 66–76.CrossRefGoogle Scholar
  11. 11.
    D.T.L. Alexander, C. Schwandt, and D.J. Fray: Acta Mater., 2006, vol. 54, pp. 2933–44.CrossRefGoogle Scholar
  12. 12.
    C. Schwandt, D.T.L. Alexander, and D.J. Fray: Electrochim. Acta, 2009, vol. 54, pp. 3819–29.CrossRefGoogle Scholar
  13. 13.
    C. Schwandt and D.J. Fray: Z. Naturforsch. A, 2007, vol. 62, pp. 655–70.CrossRefGoogle Scholar
  14. 14.
    D. Vishnu, N. Sanil, L. Shakila, G. Panneerselvam, R. Sudha, K.S. Mohandas, and K. Nagarajan: Electrochim. Acta, 2013, 100, 51–62.CrossRefGoogle Scholar
  15. 15.
    C. Schwandt: Electrochim. Acta, 2018, vol. 280, pp. 114–20.CrossRefGoogle Scholar
  16. 16.
    M.P. Rogge, J.H. Caldwell, D.R. Ingram, C.E. Green, M.J. Geselbracht, and T. Siegrist: J. Solid State Chem., 1998, vol. 141, pp. 338–42.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of NizwaNizwaOman

Personalised recommendations