Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2517–2522 | Cite as

Optimizing Wear Resistance via Brazing Temperature Adaption: Application into CBN/Cu-Sn-Ti Composites

  • Yonggang Fan
  • Junxiang Fan
  • Cong WangEmail author
Communication
  • 30 Downloads

Abstract

Cubic boron nitride (CBN)/Cu-Sn-Ti composites as potential superabrasive products are prepared. It is found that as the temperature increases, porosity keeps decreasing from 1123 K to 1223 K but becomes virtually constant afterward, which is inversely coupled to the reaction layer thickness variation. Weight loss arrives at the minimum value at 1223 K. Deep etching over the interfacial region reveals that TiN and TiB2 compounds have been generated, and their roles in determining wear properties are postulated.

Notes

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (51622401, 51861130361, 51861145312, and 51850410522), Newton Advanced Fellowship by the Royal Society (RP12G0414), Research Fund for Central Universities (N172502004), National Key Research and Development Program of China (2016YFB0300602), and Global Talents Recruitment Program endowed by the Chinese Government for their financial support. We also thank State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (SKLSP201805).

References

  1. 1.
    [1] M.W. Cook and P.K. Bossom, Int. J. Refract. Met. Hard Mater., 2000, vol. 18, pp. 147-152.CrossRefGoogle Scholar
  2. 2.
    [2] T. Ohashi, K. Yamamoto, Y. Hamada and T. Tanase, Int. J. Refract. Met. Hard Mater., 1998, vol. 16, pp. 403–407.CrossRefGoogle Scholar
  3. 3.
    [3] L. Zhu, Z. Yang and Z. Li, Int. J. Adv. Manuf. Tech., 2019, vol. 100, pp. 2537-2555.CrossRefGoogle Scholar
  4. 4.
    [4] Y. Sahin and A.R. Motorcu, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 84-90.CrossRefGoogle Scholar
  5. 5.
    G. Zhang, Y. Liu, Y. Wang, F. Guo, X. Liu, and Y. Wang: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1346–52.CrossRefGoogle Scholar
  6. 6.
    [6] E. Benko, A. Wyczesany and T.L. Barr, Ceram. Int., 2000, vol. 26, pp. 639-644.CrossRefGoogle Scholar
  7. 7.
    [7] J.M. Fernandez, R. Asthana, M. Singh and F.M. Valera, Ceram. Int., 2016, vol. 42, pp. 5447-5454.CrossRefGoogle Scholar
  8. 8.
    Ghosh A, Chattopadhyay AK (2017) Int J Refract Met Hard Mater 68:96–103CrossRefGoogle Scholar
  9. 9.
    [9] J. Zhang, J.Y. Liu and T.P. Wang, J. Mater. Sci. Technol., 2017, vol. 34, pp. 139-145.Google Scholar
  10. 10.
    [10] C.Y. Ma, W.F. Ding, J.H. Xu and Y.C. Fu, Mater. Des., 2015, vol. 65, pp. 50-56.CrossRefGoogle Scholar
  11. 11.
    [11] J. Angseryd, M. Elfwing, E. Olsson and H.O. Andrén, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 249-255.CrossRefGoogle Scholar
  12. 12.
    [12] J.G. Yang and H.Y. Fang, J. Mater. Sci. Technol., 2002, vol. 18, pp. 289-290.CrossRefGoogle Scholar
  13. 13.
    [13] F. Kohler, T. Campanella, S. Nakanishi and M. Rappaz, Acta Mater., 2008, vol. 56, pp. 1519-1528.CrossRefGoogle Scholar
  14. 14.
    [14] S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel and J. Eckert, Mater. Lett., 2015, vol. 156, pp. 202-204.CrossRefGoogle Scholar
  15. 15.
    [15] W.F. Ding, Y.J. Zhu, J.H. Xu and H.H. Su, Adv. Mech. Eng., 2014, vol. 6, pp. 1-6.Google Scholar
  16. 16.
    [16] R. Yazdi and S.F. Kashani-Bozorg, Mater. Chem. Phys., 2015, vol. 152, pp. 147-157.CrossRefGoogle Scholar
  17. 17.
    [17] S. Liu, B. Xiao, H. Xiao, L. Meng, Z. Zhang and H. Wu, Surf. Coat. Technol., 2016, vol. 286, pp. 376-382.CrossRefGoogle Scholar
  18. 18.
    [18] Q.L. Li, H.Z. Ren, W.N. Lei, K. Ding, L. Ding and S.R. Zhang, Int. J. Adv. Manuf. Tech., 2017, vol. 95, pp. 2111-2118.CrossRefGoogle Scholar
  19. 19.
    [19] W.F. Ding, J.H. Xu, Z.Z. Chen, Q. Miao and C.Y. Yang, Mater. Sci. Eng. A., 2013, vol. 559, pp. 629–634.CrossRefGoogle Scholar
  20. 20.
    [20] Y. Fan, J. Fan and C. Wang, Metall. Mater. Trans. B., 2019, vol. 50, pp. 601-606.CrossRefGoogle Scholar
  21. 21.
    [21] Y.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy, A.A. Adamovskyy and N.Y. Taranets, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 717-728.CrossRefGoogle Scholar
  22. 22.
    [22] Y.C. Hsieh and S.T. Lin, J. Alloys Compd., 2008, vol. 466, pp. 126-132.CrossRefGoogle Scholar
  23. 23.
    [23] D.C. Jana, P. Barick and B.P. Saha, J. Mater. Eng. Perform., 2018, vol. 27, pp. 2960-2966.CrossRefGoogle Scholar
  24. 24.
    [24] J. Wang, C. Liu, C. Leinenbach and U.E. Klotz, Calphad., 2011, vol. 35, pp. 82-94.CrossRefGoogle Scholar
  25. 25.
    [25] S. Hamar-Thibault and C.H. Allibert, J. Alloys Compd., 2001, vol. 317, pp. 363-366.CrossRefGoogle Scholar
  26. 26.
    [26] Z.W. Yang, C.L. Wang, Y. Wang, L.X. Zhang, D.P. Wang and J.C. Feng, J. Mater. Sci. Technol., 2017, vol. 33, pp. 1392-1401.CrossRefGoogle Scholar
  27. 27.
    [27] Q. Miao, W. Ding, Y. Zhu, Z. Chen, J. Xu and C. Yang, Ceram. Int., 2016, vol. 42, pp. 13723-13737.CrossRefGoogle Scholar
  28. 28.
    [28] M.A. Umer, P.H. Sub, J.L. Dong, H.J. Ryu and S.H. Hong, Mater. Sci. Eng. A., 2012, vol. 552, pp. 151-156.CrossRefGoogle Scholar
  29. 29.
    [29] Y. Wang, X.M. Qiu, D.Q. Sun and S.Q. Yin, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 293-297.CrossRefGoogle Scholar
  30. 30.
    [30] T. Wang, C. Zou, Z. Chen, M. Li, W. Wang, R. Li and H. Kang, Mater. Des., 2015, vol. 65, pp. 280-288.CrossRefGoogle Scholar
  31. 31.
    [31] Q. Miao, W. Ding, Y. Zhu, Z. Chen and Y. Fu, Mater. Des., 2016, vol. 98, pp. 243-253.CrossRefGoogle Scholar
  32. 32.
    [32] S.X. Liu, B. Xiao, Z.Y. Zhang and D.Z. Duan, Int. J. Refract. Met. Hard Mater., 2016, vol. 54, pp. 54-59.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations