Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2566–2573 | Cite as

Investigation of the Effect of Foaming Agent on the Fabrication of NiTi Foams Using the Self-Propagating, High-Temperature Synthesis Process

  • Helia Kalantari
  • Mandana AdeliEmail author
  • M. Reza Aboutalebi
Article
  • 71 Downloads

Abstract

Fabrication of NiTi intermetallic foams using the self-propagating, high-temperature synthesis (SHS) process was investigated. Weighed amounts of powders taken from an equimolar mixture of Ni and Ti powders along with 0.5, 1, and 1.5 wt pct of different foaming agents were cold pressed to form cylindrical compacts 10 mm in diameter, 20 mm in height, and 7 to 8 g in weight. A novel, induction-assisted ignition method was used for indirect heating and igniting the compressed mixtures at one end. As a result of intensive exothermic reaction between Ni and Ti and decomposition of foaming agents and liberation of gases, highly porous products were obtained. Characterization of the products was carried out using X-ray diffraction (XRD) and a scanning electron microscope equipped with an energy-dispersive spectroscope (SEM-EDS). The main phase in the products was detected to be B2(NiTi) with minor amounts of NiTi2 as the secondary phase. Other undesirable phases, such as Ni4Ti3 and Ni3Ti, were not detected. The effect of type and percentage of foaming agent on the formation and distribution of pores within the products was studied. Final products with porosities up to ~ 80 vol pct were obtained by adding foaming agent. Under the conditions of this study, CaH2 proved to be the most effective foaming agent considering its ability to generate a uniform distribution of pores, while TiH2 was not considered favorable due to its decomposition at relatively low temperatures. In general, the addition of foaming agents in amounts higher than 1wt pct is not recommended; due to the endothermic nature of thermal decomposition reactions of foaming agents, excessive use of these agents can result in suppression of the exothermic reaction.

Notes

References

  1. 1.
    J. Jani, M. Leary, A. Subic, and M.A. Gibson: Mater. Des. 2014, 65, 1078–1113.Google Scholar
  2. 2.
    M. Whitney, S.F. Corbin, and R.B. Gorbet: Acta Mater., 2008, vol. 56, pp. 559–70.Google Scholar
  3. 3.
    Z. Abdullah, R. Razali, I. Subuki, M.A. Omar, and M.H. Ismail: Adv. Mater. Res., 2016, vol. 1133, pp. 269–74.Google Scholar
  4. 4.
    D. Zhou, Y. Gao, M. Lai, H. Li, B. Yuan, and M. Zhu: J. Bionic Eng., 2015, vol. 12, pp. 575–82.Google Scholar
  5. 5.
    M. Kaya and O. Cakmak: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1499–1503.Google Scholar
  6. 6.
    F. Mohammadi, M. Kharaziha, and A. Ashrafi: Met. Mater. Int., 2019, vol. 25 (3), pp. 617–26.Google Scholar
  7. 7.
    C. Wen, X. Yu, W. Zeng, S. Zhao, L. Wang, G. Wan, S. Huang, H. Grover, and Z. Chen: AIMS Mater. Sci., 2018, vol. 5, pp. 559–90.Google Scholar
  8. 8.
    S.O.R. Sheykholeslami, J. Khalil-Allafi, and L. Fathyunes: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5878–87.Google Scholar
  9. 9.
    A. Bansiddhi, T.D. Sargeant, S.I. Stupp, and D.C. Dunand: Acta Biomater., 2008, vol. 4, pp. 773–82.Google Scholar
  10. 10.
    P. Salvetr, Z. Pecenova, A. Školáková, and P. Novák: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1524–27.Google Scholar
  11. 11.
    M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri: Progr. Mater. Sci., 2012, vol. 57, pp. 911–46.Google Scholar
  12. 12.
    B.Y. Li, L.J. Rong, Y.Y. Li, and V.E. Gjunter: Acta Mater., 2000, vol. 48, pp. 3895–3904.Google Scholar
  13. 13.
    Y.H. Li, L.J. Rong, and Y.Y. Li: J. Alloys Compd., 2001, vol. 325, pp. 259–62.Google Scholar
  14. 14.
    B.Y. Li, L.J. Rong, Y.Y. Li, and V.E. Gjunter: Metall. Mater. Trans. A, 2000, 31A, 1867–71.Google Scholar
  15. 15.
    C.L. Yeh and W.Y. Sung: J. Alloy Compd., 2004, vol. 376, pp. 79–88.Google Scholar
  16. 16.
    K. Khanlari, M. Ramezani, P. Kelly, P. Cao, and T. Neitzert: Intermetallics, 2018, vol. 100, pp. 32–43.Google Scholar
  17. 17.
    H. Li, B. Yuan, Y. Gao, C.Y. Chung, and M. Zhu: J. Mater. Sci., 2009, vol. 44, pp. 875–81.Google Scholar
  18. 18.
    G. Tosun, L. Ozler, M. Kaya, and N. Orhan: J. Alloys Compd., 2009, vol. 487, pp. 605–11.Google Scholar
  19. 19.
    X. Ma, H. Xie, J. Qu, Q. Song, Z. Ning, H. Zhao, and H. Yin: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 940–49.Google Scholar
  20. 20.
    Y. Arakawa, M. Kobashi, and N. Kanetake: Materials, 2012, vol. 5, pp. 1267–74.Google Scholar
  21. 21.
    S.K. Sadrnezhaad, S.H. Katiraei, and A. Ghasemi: Int. J. Adv. Des. Manuf. Technol., 2014, vol. 7, pp. 1–7.Google Scholar
  22. 22.
    P. Novák, L. Mejzlíková, A. Michalcová, J. Čapek, P. Beran, and D. Vojtěch: Intermetallics, 2013, vol. 42, pp. 85–91.Google Scholar
  23. 23.
    P. Novák, T. Veselý, I. Marek, P. Dvořák, V. Vojtěch, P. Salvetr, M. Karlik, P. Haušild, and J. Kopeček: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 932–38.Google Scholar
  24. 24.
    M. Kaya, N. Orhan, and G. Tosun: Curr. Opin. Solid State Mater. Sci., 2010, vol. 14, pp. 21–25.Google Scholar
  25. 25.
    J.L. Xu, L.Z. Bao, A.H. Liu, X.F. Jin, J.M. Luo, Z.C. Zhong, and Y.F. Zheng: J. Alloys Compd., 2015, vol. 645, pp. 137–42.Google Scholar
  26. 26.
    A. Baran and M. Polanski: J. Alloys Compd., 2018, vol. 750, pp. 863–70.Google Scholar
  27. 27.
    X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang, and Y. Wang: Mater. Lett., 2009, vol. 63, pp. 2402–04.Google Scholar
  28. 28.
    S.A. Hosseini, M. Alizadeh, A. Ghasemi, and M.A. Meshkot: J. Mater. Eng. Perform., 2013, vol. 22, pp. 405–09.Google Scholar
  29. 29.
    G. Chen, P. Cao, and N. Edmonds: Mater. Sci. Eng. A, 2013, vol. A582, pp. 117–25.Google Scholar
  30. 30.
    S. Wu, X. Liu, K.W.K. Yeung, T. Hu, Z. Xu, J.C.Y. Chung, and P.K. Chu: Acta Biomater., 2011, vol. 7, pp. 1387–97.Google Scholar
  31. 31.
    Y. Arakawa, M. Kobashi, and N. Kanetake: J. Jpn. Inst. Met., 2010, vol. 75, pp. 379–85.Google Scholar
  32. 32.
    C.L. Chu, C.Y. Chung, P.H. Lin, and S.D. Wang: Mater. Sci. Eng. A, 2004, vol. 366A, pp. 114–19.Google Scholar
  33. 33.
    P. Salvetr, A. Školáková, C. Hudrisier, P. Novák, and D. Vojtěch: Materials, 2018, vol. 11, pp. 689–700.Google Scholar
  34. 34.
    P. Rittmayer and U. Wieltelmann: Ullmann’s Encyclopedia of Industrial Chemistry, B. Elvers, ed., Wiley-VCH, Weinheim, 2012, pp. 103–32.Google Scholar
  35. 35.
    A.F. Holleman and E. Wiberg: Inorganic Chemistry, 1st ed., N. Wiberg, ed., Walter de Gruyter-Academic Press, Berlin, 2001, pp. 270–73.Google Scholar
  36. 36.
    J. Blamey, E.J. Anthony, J. Wang, and P.S. Fennell: Progr. Energy Combust. Sci., 2010, vol. 36, pp. 260–79.Google Scholar
  37. 37.
    D. Yang, J. Chen, H. Wang, J. Jiang, and A. Ma: J. Mater. Sci. Technol., 2015, vol. 31, pp. 361–68.Google Scholar
  38. 38.
    H.C. Yi and J.J. Moore: Scripta Metall., 1988, vol. 22, pp. 1889–92.Google Scholar
  39. 39.
    M. Thier, M. Hiihner, E. Kobus, D. Drescher, and C. Bourauel: Mater. Charact., 1991, vol. 27, pp. 133–40.Google Scholar
  40. 40.
    A. Foroozmehr, A. Kermanpur, F. Ashrafizadeh, and Y. Kabiri: Mater. Sci. Eng. A, 1991, vol. 528A, pp. 7952–55.Google Scholar
  41. 41.
    J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, and G. Eggeler: Acta Mater., 2010, vol. 58, pp. 3444–58.Google Scholar
  42. 42.
    P. Salvetr, T. Kubatik, D. Pignol, and P. Novák: Metall. Mater. Trans. B, 2017, 48B, 772–78.Google Scholar
  43. 43.
    A. Školáková, P. Novák, P. Salvetr, H. Moravec, V. Šefl, D. Deduytsche, and C. Detavernier: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3559–69.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Helia Kalantari
    • 1
  • Mandana Adeli
    • 1
    Email author
  • M. Reza Aboutalebi
    • 1
  1. 1.School of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations