Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2758–2768 | Cite as

Cationic Effect of Ferrous Ions on Sulfide Capacity of CaO-FetO-Al2O3-SiO2 Slag System

  • Joon Sung Choi
  • Dong Joon MinEmail author
Article
  • 22 Downloads

Abstract

The cationic effect of ferrous ions on the sulfide capacity of CaO-FetO-Al2O3-SiO2 slags was studied from the viewpoint of the ionic structure in the slag using micro-Raman spectroscopy. In the cation-excess region (M2+/2(Fe3+ + Al3+) > 1.0), the sulfide capacity was directly proportional to the basicity of the slags, owing to the S2− stabilizing effect of excess cations. However, in the cation-deficient region (M2+/2(Fe3+ + Al3+) < 1.0), the sulfide capacity was independent of the basicity of the slags owing to the deficiency of cations required for charge compensation with Al3+ and Fe3+. The cation-substitution effect on the sulfide capacity of the CaO-rich slags (FetO/(FetO + CaO < 0.5) exhibited a linear relationship with the Fe2+ content because Fe2+ had a stronger affinity with S2− compared to that with Ca2+. However, in the FetO-rich slags (FetO/(FetO + CaO > 0.5), the sulfide capacity decreased with the increase of the Fe2+ content owing to the Qn unit affinity of the Fe2+ ion. The sulfide capacity was determined by the competition between the Qn unit affinity and stability of the S2− ion, depending on the type of cation. Therefore, the partial covalent bonding between the M2+ cations (M: Ca, Fe) and aluminosilicate affected the ionic interactions with the S2− ions.

Notes

Acknowledgments

This work was supported by the Ministry of Trade, Industry and Energy under Project No. 10063488. It was also partially funded by Brain Korea 21. We would like to thank Editage (www.editage.co.kr) for English language editing.

References

  1. 1.
    B.O. Mysen, F. Seifert, and D. Virgo: Am. Mineral., 1980, vol. 65, pp. 867-884.Google Scholar
  2. 2.
    L. Pargamin, C. Lupis, and P. Flinn: Metall. Trans. B, 1972, vol. 3, pp. 2093-2105.Google Scholar
  3. 3.
    A. Kondratiev and E. Jak: Fuel, 2001, vol. 80, pp. 1989-2000.Google Scholar
  4. 4.
    4. M. Hino, T. Nagasaka, A. Katsumata, K.-I. Higuchi, K. Yamaguchi, and N. Kon-No: Metall. Mater. Trans. B, 1999, vol. 30, pp. 671-683.Google Scholar
  5. 5.
    S. Lee and D.J. Min: J. Am. Ceram. Soc., vol. 101, pp. 634-643 (2016)Google Scholar
  6. 6.
    6. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39, pp. 150-153.Google Scholar
  7. 7.
    7. D.B. Dingwell and D. Virgo: Geochim. Cosmochim. Acta., 1988, vol. 52, pp. 395-403.Google Scholar
  8. 8.
    8. Y.J. Kim and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 852-860.Google Scholar
  9. 9.
    9. Y. Park and D.J. Min: ISIJ Int., 2016, vol. 56, pp. 520-526.Google Scholar
  10. 10.
    10. B. Hwang, J.-H. Shim, M.-G. Lee, J. Lee, J.-H. Jung, B.-S. Kim, and S.-B. Won: Korean. J. Met. Mater., 2016, vol. 54, pp. 862-874.Google Scholar
  11. 11.
    J.M, Park, C.H, Keum, J.W. Son, and Y.K. Shin: Steelmaking Conference Proceedings, 1994, vol. 77, pp. 461–70.Google Scholar
  12. 12.
    12. S. Basu, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2008, vol. 39, pp. 447-456.Google Scholar
  13. 13.
    13. S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 2-11.Google Scholar
  14. 14.
    14. P.L. Lin and A.D. Pelton: Metall. Trans. B, 1979, vol. 10, pp. 667-675.Google Scholar
  15. 15.
    15. A. Paul and R. Douglas: Phys. Chem. Glasses, 1966, vol. 7, pp. 1-13.Google Scholar
  16. 16.
    16. F. L. Harding: Glass Technol., 1972, vol. 13, pp. 43-49.Google Scholar
  17. 17.
    17. B.O. Mysen, D. Virgo, C.M. Scarfe, and D. Cronin: Am. Mineral., 1985, vol. 70, pp. 487-498.Google Scholar
  18. 18.
    18. S. Jahanshahi and S. Wright: ISIJ Int., 1993, vol. 33, pp. 195-203.Google Scholar
  19. 19.
    19. L. Yang and G. Belton: Metall. Mater. Trans. B, 1998, vol. 29, pp. 837-845.Google Scholar
  20. 20.
    20. J.M. Park: Steel Res. Int., 2002, vol. 73, pp. 39-43.Google Scholar
  21. 21.
    21. L. Pauling: J. Am. Chem. Soc., 1929, vol. 51, pp. 1010-1026.Google Scholar
  22. 22.
    22. M.J. Toplis and D.B. Dingwell: Geochim. Cosmochim. Acta., 2004, vol. 68, pp. 5169-5188Google Scholar
  23. 23.
    23. B.O. Mysen, D. Virgo, and I. Kushiro: Am. Mineral., 1981, vol. 66, pp. 678-701.Google Scholar
  24. 24.
    24. S.K. Lee and J.F. Stebbins: Am. Mineral., 1999, vol. 84, pp. 937-945.Google Scholar
  25. 25.
    25. J.S. Choi, Y. Park, S. Lee, and D.J. Min: J. Am. Ceram. Soc., 2018, vol. 101, pp. 2856-2867.Google Scholar
  26. 26.
    26. H.S. Park, S.S. Park, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42, pp. 692-699.Google Scholar
  27. 27.
    27. S. Lee and D.J. Min: Steel Res. Int., 2018, vol. 89, pp. 1800055.Google Scholar
  28. 28.
    28. Y. Park and D.J. Min: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1709-1718.Google Scholar
  29. 29.
    29. J.-H. Park and P.C.-H. Rhee: J. Non-Cryst. Solids., 2001, vol. 282, pp. 7-14.Google Scholar
  30. 30.
    30. C.J.B. Fincham and F.D. Richardson: Proc. R. Soc., 1954, vol. 223, pp. 40-62.Google Scholar
  31. 31.
    31. C. Wagner: Metall. Trans. B, 1975, vol. 6, pp. 405-409.Google Scholar
  32. 32.
    32. R.A. Sharma and F.D. Richardson: Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 1586-1592.Google Scholar
  33. 33.
    33. J.D. Seo and S.H. Kim: Steel Res. Int., 1999, vol. 70, pp. 203-208.Google Scholar
  34. 34.
    HC Oneill and J.A. Mavrogenes: J. Petrol., 2002, vol. 43, pp. 1049-1087.Google Scholar
  35. 35.
    G.R.S. Pierre and J. Chipman: JOM, 1956, vol. 8, pp. 1474-1483.Google Scholar
  36. 36.
    K.D. Kim, W.W. Huh, and D.J. Min: Metall. Mater. Trans. B, 2014, vol. 45, pp. 889-896.Google Scholar
  37. 37.
    37. S. Ban-Ya, M. Hino, A. Sato, and O. Terayama: Tetsu-to-Hagané, 1991, vol. 77, pp. 361-368.Google Scholar
  38. 38.
    38. C. Wang, Q. Lu, S. Zhang, and F. Li: J. Univ. Sci. Technol. Beijing, 2006, vol. 13, pp. 213-217.Google Scholar
  39. 39.
    39. A. Bronson and G.R.S. Pierre: Metall. Trans. B., 1981, vol. 12, pp. 729-731.Google Scholar
  40. 40.
    40. K.P. Abraham, M.W. Davies, and F.D. Richardson: J. Iron Steel Inst., 1960, vol. 195, pp. 58-64.Google Scholar
  41. 41.
    41. M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol. 30, pp. 909-920.Google Scholar
  42. 42.
    42. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1999, vol. 39, pp. 657-663.Google Scholar
  43. 43.
    43. J.H. Park and G.-H. Park: ISIJ Int., 2012, vol. 52, pp. 764-769.Google Scholar
  44. 44.
    44. Y.B. Kang and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1211-1217.Google Scholar
  45. 45.
    45. P.T. Carter and T. Macfarlane: J. Iron Steel Inst., 1957, vol. 185, pp. 54-66.Google Scholar
  46. 46.
    46. S. Lee, E.J. Jung, J.H. Park and D.J. Min: J.Non-Cryst. Solids., 2015, vol. 429, pp. 54-60.Google Scholar
  47. 47.
    47. J.H. Park: ISIJ Int., 2012, vol. 52, pp. 1627-1636.Google Scholar
  48. 48.
    48. Y. Sasaki, M. Mohri, K. Suyama, and K. Ishii: ISIJ Int., 2000, vol. 40, pp. 1181-1187.Google Scholar
  49. 49.
    49. A. D. Muro, N. Métrich, M. Mercier, D. Giordano, D. Massare, and G. Montagnac: Chem. Geol., 2009, vol. 259, pp. 78-88.Google Scholar
  50. 50.
    D. De-Faria, S. Venâncio-Silva, and M. De-Oliveira: J. Raman Spectrosc., 1997, vol. 28, pp. 873-878.Google Scholar
  51. 51.
    51. G.W. Toop and C.S. Samis: Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 878-887.Google Scholar
  52. 52.
    52. D.R. Neuville, L. Cormier, and D. Massiot: Geochim. Et. Cosmochim. Acta, 2004, vol. 68, pp. 5071-5079.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeodaemun-guRepublic of Korea

Personalised recommendations