Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2733–2746 | Cite as

Kinetics of the Carbothermic Reduction of Manganese Oxide from Slag

  • B. J. Jamieson
  • M. Barati
  • K. S. ColeyEmail author


Experiments were performed using a range of test conditions to elucidate the rate controlling step during the reaction of liquid iron-carbon droplets and slags containing manganese oxide. Four conditions were tested in the system: initial MnO content in the slag (5, 10, and 15 wt pct), initial carbon content of the metal (1, 2.5, 4.3 wt pct), initial droplet mass (0.5, 1.0, and 1.5 g), and reaction temperature (1823 K [1550 °C], 1873 K [1600 °C], and 1923 K [1650 °C]). Data were collected using the Constant Volume Pressure Increase (CVPI) technique which tracked the continuous pressure increase in the sealed furnace over time. Samples were quenched at the end of each experiment and chemistry was checked using LECO Carbon Analysis and ICP (Inductively Coupled Plasma) for manganese. The rate of reaction can be broken into a faster initial period related to internal CO formation, and a slower second reaction controlled by a complex mechanism involving transport of oxygen from slag to metal via CO2 and decomposition of the CO2 at the gas–metal interface.



The authors thank the National Science and Research Council of Canada (NSERC, STPGP463252-14) for funding support. Special thanks to ArcelorMittal Dofasco, Stelco, Praxair, and Hatch Ltd. for their in-kind support, technical expertise, and their many helpful discussions.


  1. 1.
    B.J. Jamieson and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1613–24.CrossRefGoogle Scholar
  2. 2.
    B.J. Jamieson, Y. Tabatabaei, M. Barati, and K. S. Coley: Metall. Mater. Trans. B, 2019, vol. 50, pp. 192–203.CrossRefGoogle Scholar
  3. 3.
    R. Elliott, K. Coley, S. Mostaghel, and M. Barati: Jom, 2018, vol. 70, pp. 1–11.CrossRefGoogle Scholar
  4. 4.
    O.S. Bobkova and V.V. Barsegyan: Metallurgist, 2006, vol. 50, pp. 463–68.CrossRefGoogle Scholar
  5. 5.
    L.N. Kologrivova, A.Ya. Nakonechnyi, Z.G. Trofimova, O.V. Nosochenko, and N.N. Kulik: Metallurg, 1987, vol. 5, pp. 28–29.Google Scholar
  6. 6.
    O.I. Nokhrina, V.P. Komshukov, and V.I. Dmitrienko: Metallurgist, 2004, vol. 48, pp. 264–65.CrossRefGoogle Scholar
  7. 7.
    M. Eissa, H. El-Faramawy, and G. Farid: Steel Res., 1998, vol. 69, pp. 373–80.CrossRefGoogle Scholar
  8. 8.
    W.L. Daines and R.D. Pehlke: Metall. Trans., 1971, vol. 2, pp. 1203–11.CrossRefGoogle Scholar
  9. 9.
    I.D. Sommerville, P. Grieveson, and J. Taylor: Ironmak. Steelmak., 1980, vol. 7, pp. 25–32.Google Scholar
  10. 10.
    P. Wei, M. Sano, M. Hirasawa, and K. Mori: ISIJ Int., 1991, vol. 31, pp. 358–65.CrossRefGoogle Scholar
  11. 11.
    K. Xu, G. Jiang, W. Ding, L. Gu, S. Guo, and B. Zhao: ISIJ Int., 1993, vol. 33, pp. 104–8.CrossRefGoogle Scholar
  12. 12.
    S.K. Tarby and W.O. Philbrook: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1005–17.Google Scholar
  13. 13.
    T. Yagi and Y. Ono: Trans. Iron Steel Inst. Japan, 1970, vol. 10, pp. 36–37.Google Scholar
  14. 14.
    R.J. Pomfret and P. Grieveson: Ironmak. Steelmak., 1978, vol. 5, pp. 191–97.Google Scholar
  15. 15.
    Y. Kawai, N. Shinozaki, and K. Mori: Can. Metall. Q., 1982, vol. 21, pp. 385–91.CrossRefGoogle Scholar
  16. 16.
    N. Shinozaki, K. Ishido, K. Mori, and Y. Kawai: Tetsu-to-Hagane, 1984, vol. 70, pp. 73–80.CrossRefGoogle Scholar
  17. 17.
    H. Sohn, Z. Chen, and W. Jung: Steel Res., 2000, vol. 71, pp. 145–52.CrossRefGoogle Scholar
  18. 18.
    M.A. Rhamdhani: PhD Thesis—McMaster Univ., 2005.Google Scholar
  19. 19.
    C.L. Molloseau, and R.J. Fruehan: Metall. Mater. Trans. B. 2002, vol. 33, pp. 335–44.CrossRefGoogle Scholar
  20. 20.
    K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B 2017, vol. 48, pp. 2984–3001.CrossRefGoogle Scholar
  21. 21.
    E. Chen and K.S. Coley: Ironmak. Steelmak., 2010, vol. 37, pp. 541–45.CrossRefGoogle Scholar
  22. 22.
    D.R. Sain and G.R. Belton: Metall. Trans. B, 1976, vol. 7, pp. 235–44.CrossRefGoogle Scholar
  23. 23.
    K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1119–35.CrossRefGoogle Scholar
  24. 24.
    D. J. Min and R. J. Fruehan: Metall. Trans. B, 1992, vol. 23, pp. 29–37.CrossRefGoogle Scholar
  25. 25.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, and M.A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.CrossRefGoogle Scholar
  26. 26.
    P. Wei, M. Sano, M. Hirasawa, and K. Mori: Trans. Iron Steel Inst. Japan, 1988, vol. 28, pp. 637–44.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.McMaster UniversityHamiltonCanada
  2. 2.ArcelorMittal Global R&D HamiltonHamiltonCanada
  3. 3.University of TorontoTorontoCanada
  4. 4.Western UniversityLondonCanada

Personalised recommendations