Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 3088–3102 | Cite as

Kinetic Study on Alloying Element Transfer During an Electroslag Remelting Process

  • Dong Hou
  • De-Yong Wang
  • Tian-Peng QuEmail author
  • Jun Tian
  • Hui-Hua WangEmail author
Article
  • 96 Downloads

Abstract

Experimental and theoretical studies have been carried out to investigate the effects of slag on the alloying elements in ingots during the electroslag remelting (ESR) process with a focus on developing a mass-transfer model to understand the mechanism of slag-metal reaction. Stainless steel 1Cr21Ni5Ti was used as the electrode and remelted with two different kinds of slags using a 50-kg ESR furnace. The contents of sulfur, aluminum, titanium and silicon along the axial direction of the produced ingots were analyzed. On the basis of the penetration and film theories, the theoretical model developed in this work elucidates the kinetics of the slag-metal reaction revealing the mechanism of alloying element transfer during the ESR process. The calculation results obtained from the model agree well with the experimental results. The model indicates that the resultant [O] coming from the desulfurization reaction of (O2−) + [S] = (S2−) + [O] causes the oxidation of alloying elements in steel by [M] + [O] = (MO). The distribution ratio of sulfur LS decreases with the increase of slag temperature in the first slag-temperature-rising period, and the concentration of sulfur in the ingot at the beginning of the ESR process is lower than in the rest of the process because of the combination of the large distribution ratio of sulfur LS and excellent kinetic conditions. The concentration of aluminum along the height of the ingot has an increasing trend in the first slag-temperature-rising period, while it has a decreasing trend in the rest of the process. Two methods can solve this problem: one is starting up the ESR furnace by high temperature molten slag technology and the other is continually adding extra titania into the molten slag in the first slag-temperature-rising period.

Notes

Acknowledgments

This project is supported by the National Nature Science Foundation of China with Grant Nos. 51674172, 51804205 and 51874203. This project is also supported by the China Postdoctoral Science Foundation with grant no. 7131704818 and Jiangsu Science and Technology Foundation with Grant No. 18KJB450002.

References

  1. 1.
    Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol.47, no.2, pp.1465-1474.CrossRefGoogle Scholar
  2. 2.
    M.E. Fraser, and A. Mitchell: Ironmaking Steelmaking, 1976, vol.3, no.5, pp. 279-287.Google Scholar
  3. 3.
    A. Mitchell: Doctor’s Thesis, The University of British Columbia, 1974, pp. 103.Google Scholar
  4. 4.
    J.H. Wei, and A. Mitchell: Acta Metallurgica Sinica, 1984, vol.20, no.5, pp. 261-279.Google Scholar
  5. 5.
    K. Schwerdtfeger, W. Wepner, and G. Pateisky: Ironmaking Steelmaking, 1978, vol.5, no.3, pp. 143-135.Google Scholar
  6. 6.
    S.C. Duan, X. Shi, M.T. Mao, W.S. Yang, S.W. Han, H.J. Guo, and J. Guo: Scientific Reports, 2018, vol.8, no.1, pp.1-14.CrossRefGoogle Scholar
  7. 7.
    Q. Wang, Z. He, B.K. Li, and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol.45, no.12, pp.2014-2425.Google Scholar
  8. 8.
    D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu: Metall. Mater. Trans. B, 2017, vol.48, no.6, pp.1885-1895.CrossRefGoogle Scholar
  9. 9.
    D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao: ISIJ Int., 2017, vol.57, no.8, pp.1400-1419.CrossRefGoogle Scholar
  10. 10.
    C.Y. Liu, M. Yagi, X. Gao, S.J. Kim, F. Huang, S. Ueda, and S.Y. Kitamura: Metall. Mater. Trans. B, 2018, vol.49, no.1, pp.113-122.CrossRefGoogle Scholar
  11. 11.
    Y. Tabatabaei, K.S. Coley, G.A. Irons, and S. Sun: Metall. Mater. Trans. B, 2018, vol.49, no.1, pp.375-387.CrossRefGoogle Scholar
  12. 12.
    J.H. Shin, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol.48, no.1, pp.46-59.CrossRefGoogle Scholar
  13. 13.
    Z.B. Feng, W.X. Pan, Y.W. Wang, and Z.W. Long: Powder Technology, 2018, vol.340, pp.502-510.CrossRefGoogle Scholar
  14. 14.
    Z.B. Feng, W.X. Pan, H. Zhang, X.L. Cheng, Z.W. Long, and J.H. Mo: Powder Technology, 2018, vol.327, pp.201-214.CrossRefGoogle Scholar
  15. 15.
    H.B. Li, S.X. Yang, S.C. Zhang, B.B. Zhang, Z.H. Jiang, H. Feng, P.D. Han, and J.Z. Li: Materials and Design, 2017, vol.118, pp.207-217.CrossRefGoogle Scholar
  16. 16.
    H.B. Li, E.Z. Zhou, Y.B. Ren, D.W. Zhang, D.K. Xu, C.G. Yang, H. Feng, Z.H. Jiang, X.G. Li, T.Y. Gu, and K. Yang: Corrosion Science, 2016, vol.111, pp.811-821CrossRefGoogle Scholar
  17. 17.
    H.B. Li, B.B. Zhang, Z.H. Jiang, S.C. Zhang, H. Feng, P.D. Han, N. Dong, W. Zhang, G.P. Li, G.W. Fan, and Q.Z. Lin: Journal of Alloys and Compounds, 2016, vol.686, pp.326-338.CrossRefGoogle Scholar
  18. 18.
    Z.Y. Deng, and M.Y. Zhu: ISIJ Int., 2013, vol.53, no.3, pp.450-458.CrossRefGoogle Scholar
  19. 19.
    G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol.40, no.2, pp. 121-128.CrossRefGoogle Scholar
  20. 20.
    G. Pateisky: Journal of vacuum science & technology, 1972, vol.9, no.6, pp. 1323-1318.CrossRefGoogle Scholar
  21. 21.
    Wei Jihe: Chin.J.Met.Sci.Technol., 1989, vol.5, pp. 245-235.Google Scholar
  22. 22.
    D. Hou, Z.H. Jiang, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Ironmaking & Steelmaking, 2016, vol.43, no.7, pp.517-525.CrossRefGoogle Scholar
  23. 23.
    D. Hou, Z.H. Jiang, T.P. Qu, D.Y. Wang, F.B. Liu, and H.B. Li (2019) J. Iron Steel Res. Int. 26(1):20–31CrossRefGoogle Scholar
  24. 24.
    X.M. Yang, C.B. Shi, M. Zhang, and G.M. Chai: Metall. Mater. Trans. B, 2011, vol.42B, no.12, pp. 1150-1180.CrossRefGoogle Scholar
  25. 25.
    X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol.42B, no.10, pp. 951-2011.CrossRefGoogle Scholar
  26. 26.
    X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol.42B, no.8, pp.738-770.CrossRefGoogle Scholar
  27. 27.
    X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol.49, no.12, pp. 1828-1837.CrossRefGoogle Scholar
  28. 28.
    The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.Google Scholar
  29. 29.
    A. Karasev, and H. Suito: Metall. Mater. Trans. B, 1999, vol.30, no.4, pp. 257-249.CrossRefGoogle Scholar
  30. 30.
    J.H. Park, S.B. Lee, D.S. Kim, and J.J. Pak: ISIJ Int., 2009, vol.49, no.3, pp. 337-342.CrossRefGoogle Scholar
  31. 31.
    S.W. Cho, and H. Sutio: ISIJ Int., 1994, vol.34, no.9, pp. 746-754.CrossRefGoogle Scholar
  32. 32.
    C.J. Xiang: Chart Data Manual for Steelmaking, Metallurgical Industry Press, Beijing, 1984, pp. 662.Google Scholar
  33. 33.
    R.D. Morales, H.H. Rodriguez, G.P. Garnica, and J.A. Romero: ISIJ Int., 1997, vol. 37, no. 11, pp. 1072-1080.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Iron and SteelSoochow UniversitySuzhouP.R. China

Personalised recommendations