Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2681–2693 | Cite as

A Thermodynamic Model Toward the Comprehension of Ferrous Burden Softening and Melting Using FactSage Macro-Processing

  • Ismael Vemdrame FloresEmail author
  • Aline Lima da Silva
  • Nestor Cezar Heck
  • Maurício Covcevich Bagatini


The softening and melting properties of iron-bearing materials play a decisive role in the formation of the cohesive zone, which greatly affects blast furnace gas flow distribution and heat-transfer efficiency. To improve the understanding regarding the evolution of condensed phases during reduction, softening, and melting, a thermodynamic model has been developed using FactSage™ thermodynamic software and macro-processing. The model was constructed using a series of equilibrium stages and splitters to determine flow directions of streams and to consider kinetic inhibitions. For all iron-bearing materials studied, the methodology proposed for modeling was capable of obtaining reduction degrees in very good agreement to its experimental data. The evolution of solid phases was qualitatively comparable to the available literature, with Fayalite, Kirschsteinite, Melilite, and FeO as the main solid phases in equilibrium before slag formation. The comparison between the profiles of the calculated slag mass fraction and the experimental pressure drop showed a close relation between these properties. Moreover, the level of heterogeneity of each raw material may play a significant role in the interpretation of its results.



The authors express their gratitude to CAPES-PROEX, CNPq, and FAPEMIG for stimulating and supporting research.


  1. 1.
    1. N.J. Busby, T.A.T. Fray and D.C. Goldring: Ironmak. Steelmak., 1994, vol. 21, pp. 229-236.Google Scholar
  2. 2.
    N. Nakamura, Y. Togino, T. Tateoka: Ironmak. Steelmak., 1978, vol. 5, pp. 1-17.Google Scholar
  3. 3.
    3. W. Yang, Z. Zhou, D. Pinson and A. Yu: Metall. Trans. B, 2015, vol. 46B, pp. 977-992.CrossRefGoogle Scholar
  4. 4.
    4. X.F. Dong, A.B. Yu, S.J. Chew and P. Zulli: Metall. Trans. B, 2010, vol. 41B, pp. 330-349.CrossRefGoogle Scholar
  5. 5.
    5. J. Sterneland and A.K. Lahiri: Ironmak. Steelmak., 1999, vol. 26, pp. 339-348.CrossRefGoogle Scholar
  6. 6.
    6. P.F. Nogueira and R.J. Fruehan: Metall. Trans. B, 2004, vol. 35, pp. 829-838.CrossRefGoogle Scholar
  7. 7.
    7. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier, London, UK, 1987.Google Scholar
  8. 8.
    8. M. Hayashi, K. Suzuki, Y. Maeda and T. Watanabe: ISIJ Int, 2015, vol. 55, pp. 1223-1231.CrossRefGoogle Scholar
  9. 9.
    9. P. Kaushik, R.J. Fruehan: Ironmak. Steelmak., 2006, vol. 33, pp. 507-519.CrossRefGoogle Scholar
  10. 10.
    X. Liu, T. Honeyands, G. Evans, P. Zulli and D. O’Dea: Ironmak. Steelmak., 2018. 1:1-120. doi:10.1080/03019233.2018.1464107CrossRefGoogle Scholar
  11. 11.
    A. Kemppainen, K. Ohno, M. Iljana, O. Mattila, T. Paananen, E. Heikkinen, T. Maeda, K. Kunitomo and T. Fabritius: ISIJ Int, 2015, vol. 55, pp. 2039-2046.CrossRefGoogle Scholar
  12. 12.
    12. W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She and J.S. Wang: Ironmak. Steelmak., 2016, vol. 43, pp.22-30.CrossRefGoogle Scholar
  13. 13.
    13. X. Liu, S. Wu, W. Huang, K. Zhang, K. Du: ISIJ Int, 2014, vol. 54, pp. 2089-2096.CrossRefGoogle Scholar
  14. 14.
    14. P. Kaushik and R.J. Fruehan: Ironmak. Steelmak., 2006, vol. 33, pp. 520-528.CrossRefGoogle Scholar
  15. 15.
    15. P. Kaushik and R.J. Fruehan: Ironmak. Steelmak., 2007, vol. 34, pp. 10-22.CrossRefGoogle Scholar
  16. 16.
    16. T. Nishimura, K. Higuchi, M. Naito and K. Kunitomo: ISIJ Int, 2011, vol. 51, pp. 1316-1321.CrossRefGoogle Scholar
  17. 17.
    17. K. Ichikawa, J. Ishii, S. Watakabe and M. Sato: ISIJ Int, 2015, vol. 55, pp. 544-551.CrossRefGoogle Scholar
  18. 18.
    18. S. L. Wu, B. Su, X. L. Liu and M. Y. Kou: Ironmak. Steelmak., 2018, vol. 45, pp. 50-57.CrossRefGoogle Scholar
  19. 19.
    19. P. Koukkari and R. Pajarre: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2006, vol. 30, 18-26.CrossRefGoogle Scholar
  20. 20.
    20. K. Hack: The SGTE Casebook Thermodynamics at Work, Woodhead Publishing Limited, Cambridge, England, 2008.CrossRefGoogle Scholar
  21. 21.
    21. S. Petersen, K. Hack, P. Monheim and U. Pickartz: Int. J. Mat. Res., 2007, vol, 98, pp. 946-953.CrossRefGoogle Scholar
  22. 22.
    22. J.H. Strassburger: Blast Furnace Theory and Practice, Gordon and Breach, New York, 1969.Google Scholar
  23. 23.
    23. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin and S. Petersen: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2009, vol. 33, pp. 295-311.CrossRefGoogle Scholar
  24. 24.
    T. Bakker and R.H. Heerema: Ironmaking Conf. Proc., 1998, vol 41, pp. 1597-1608.Google Scholar
  25. 25.
    I. Shigaki, S. Shirouchi, K. Tokutake and N. Hasegawa: ISIJ Int, 1990, vol. 30, pp. 199-207.CrossRefGoogle Scholar
  26. 26.
    T. Bakker: Dissertation, Delft University of Technology, Netherlands, 1999, p. 272.Google Scholar
  27. 27.
    K. Higuchi, M. Naito, M. Nakano and Y. Takamoto: ISIJ Int, 2004, vol. 44, pp. 2057-2066.CrossRefGoogle Scholar
  28. 28.
    H. Hotta and Y. Yamaoka: Int J Rep, 1984, vol. 107, pp. 294-301.Google Scholar
  29. 29.
    29. H.-C. Chuang, W.-S. Hwang and S.-H. Liu: Mater. Trans., 2009, vol. 50, pp. 1448-1456.CrossRefGoogle Scholar
  30. 30.
    30. T. Rosenqvist: Principles of Extractive Metallurgy, Tapir Academic Press, Trondheim, 2004.Google Scholar
  31. 31.
    31. P. Barnaba: Ironmak. Steelmak., 1985, vol. 12, pp. 53-63.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Ismael Vemdrame Flores
    • 1
    Email author
  • Aline Lima da Silva
    • 2
  • Nestor Cezar Heck
    • 3
  • Maurício Covcevich Bagatini
    • 1
  1. 1.Ironmaking Processes Laboratory (LPS)Federal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Metallurgical and Materials DepartmentFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.Computational Thermodynamics for Metallurgy and Materials (NTCm Group)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations