Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A Thermodynamic Model Toward the Comprehension of Ferrous Burden Softening and Melting Using FactSage Macro-Processing

  • 184 Accesses

Abstract

The softening and melting properties of iron-bearing materials play a decisive role in the formation of the cohesive zone, which greatly affects blast furnace gas flow distribution and heat-transfer efficiency. To improve the understanding regarding the evolution of condensed phases during reduction, softening, and melting, a thermodynamic model has been developed using FactSage™ thermodynamic software and macro-processing. The model was constructed using a series of equilibrium stages and splitters to determine flow directions of streams and to consider kinetic inhibitions. For all iron-bearing materials studied, the methodology proposed for modeling was capable of obtaining reduction degrees in very good agreement to its experimental data. The evolution of solid phases was qualitatively comparable to the available literature, with Fayalite, Kirschsteinite, Melilite, and FeO as the main solid phases in equilibrium before slag formation. The comparison between the profiles of the calculated slag mass fraction and the experimental pressure drop showed a close relation between these properties. Moreover, the level of heterogeneity of each raw material may play a significant role in the interpretation of its results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    1. N.J. Busby, T.A.T. Fray and D.C. Goldring: Ironmak. Steelmak., 1994, vol. 21, pp. 229-236.

  2. 2.

    N. Nakamura, Y. Togino, T. Tateoka: Ironmak. Steelmak., 1978, vol. 5, pp. 1-17.

  3. 3.

    3. W. Yang, Z. Zhou, D. Pinson and A. Yu: Metall. Trans. B, 2015, vol. 46B, pp. 977-992.

  4. 4.

    4. X.F. Dong, A.B. Yu, S.J. Chew and P. Zulli: Metall. Trans. B, 2010, vol. 41B, pp. 330-349.

  5. 5.

    5. J. Sterneland and A.K. Lahiri: Ironmak. Steelmak., 1999, vol. 26, pp. 339-348.

  6. 6.

    6. P.F. Nogueira and R.J. Fruehan: Metall. Trans. B, 2004, vol. 35, pp. 829-838.

  7. 7.

    7. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier, London, UK, 1987.

  8. 8.

    8. M. Hayashi, K. Suzuki, Y. Maeda and T. Watanabe: ISIJ Int, 2015, vol. 55, pp. 1223-1231.

  9. 9.

    9. P. Kaushik, R.J. Fruehan: Ironmak. Steelmak., 2006, vol. 33, pp. 507-519.

  10. 10.

    X. Liu, T. Honeyands, G. Evans, P. Zulli and D. O’Dea: Ironmak. Steelmak., 2018. 1:1-120. doi:10.1080/03019233.2018.1464107

  11. 11.

    A. Kemppainen, K. Ohno, M. Iljana, O. Mattila, T. Paananen, E. Heikkinen, T. Maeda, K. Kunitomo and T. Fabritius: ISIJ Int, 2015, vol. 55, pp. 2039-2046.

  12. 12.

    12. W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She and J.S. Wang: Ironmak. Steelmak., 2016, vol. 43, pp.22-30.

  13. 13.

    13. X. Liu, S. Wu, W. Huang, K. Zhang, K. Du: ISIJ Int, 2014, vol. 54, pp. 2089-2096.

  14. 14.

    14. P. Kaushik and R.J. Fruehan: Ironmak. Steelmak., 2006, vol. 33, pp. 520-528.

  15. 15.

    15. P. Kaushik and R.J. Fruehan: Ironmak. Steelmak., 2007, vol. 34, pp. 10-22.

  16. 16.

    16. T. Nishimura, K. Higuchi, M. Naito and K. Kunitomo: ISIJ Int, 2011, vol. 51, pp. 1316-1321.

  17. 17.

    17. K. Ichikawa, J. Ishii, S. Watakabe and M. Sato: ISIJ Int, 2015, vol. 55, pp. 544-551.

  18. 18.

    18. S. L. Wu, B. Su, X. L. Liu and M. Y. Kou: Ironmak. Steelmak., 2018, vol. 45, pp. 50-57.

  19. 19.

    19. P. Koukkari and R. Pajarre: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2006, vol. 30, 18-26.

  20. 20.

    20. K. Hack: The SGTE Casebook Thermodynamics at Work, Woodhead Publishing Limited, Cambridge, England, 2008.

  21. 21.

    21. S. Petersen, K. Hack, P. Monheim and U. Pickartz: Int. J. Mat. Res., 2007, vol, 98, pp. 946-953.

  22. 22.

    22. J.H. Strassburger: Blast Furnace Theory and Practice, Gordon and Breach, New York, 1969.

  23. 23.

    23. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin and S. Petersen: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2009, vol. 33, pp. 295-311.

  24. 24.

    T. Bakker and R.H. Heerema: Ironmaking Conf. Proc., 1998, vol 41, pp. 1597-1608.

  25. 25.

    I. Shigaki, S. Shirouchi, K. Tokutake and N. Hasegawa: ISIJ Int, 1990, vol. 30, pp. 199-207.

  26. 26.

    T. Bakker: Dissertation, Delft University of Technology, Netherlands, 1999, p. 272.

  27. 27.

    K. Higuchi, M. Naito, M. Nakano and Y. Takamoto: ISIJ Int, 2004, vol. 44, pp. 2057-2066.

  28. 28.

    H. Hotta and Y. Yamaoka: Int J Rep, 1984, vol. 107, pp. 294-301.

  29. 29.

    29. H.-C. Chuang, W.-S. Hwang and S.-H. Liu: Mater. Trans., 2009, vol. 50, pp. 1448-1456.

  30. 30.

    30. T. Rosenqvist: Principles of Extractive Metallurgy, Tapir Academic Press, Trondheim, 2004.

  31. 31.

    31. P. Barnaba: Ironmak. Steelmak., 1985, vol. 12, pp. 53-63.

Download references

Acknowledgments

The authors express their gratitude to CAPES-PROEX, CNPq, and FAPEMIG for stimulating and supporting research.

Author information

Correspondence to Ismael Vemdrame Flores.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 22, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vemdrame Flores, I., Lima da Silva, A., Heck, N.C. et al. A Thermodynamic Model Toward the Comprehension of Ferrous Burden Softening and Melting Using FactSage Macro-Processing. Metall and Materi Trans B 50, 2681–2693 (2019). https://doi.org/10.1007/s11663-019-01684-z

Download citation