Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2557–2565 | Cite as

The Effect of Melt Ultrasound Treatment on the Microstructure and Age Hardenability of Al-4 Wt Pct Cu/TiC Composite

  • Sean D’Brass
  • K. R. Ravi
  • J. Nampoothiri
  • K. M. Saradesh
  • T. Rajasekaran
  • G. S. VinodkumarEmail author


In the present work, Al-4 wt pct Cu/TiC composite was synthesized by the molten salt route that contains submicron-sized TiC particles in the Al-4 wt pct Cu matrix. The concentration of the TiC particle in the base alloy is 7.5 wt pct. Melt ultrasound treatment was done by remelting the as-cast composite at 1023 K (750 °C) in a view to refine the size of TiC particles to nanoscale and distribute them evenly in the matrix. The microstructure and age hardenability of the untreated and ultrasound-treated composites were investigated. The TiC particles accelerate the precipitation kinetics of CuAl2 phase in Al-4 wt pct Cu alloy. In the present study, the hardness obtained for untreated Al-4 wt pct Cu/TiC composite is 120 VHN within 5 hours of peak aging time, which is higher than the hardness of the monolithic Al-4 wt pct Cu, which is 104 VHN at 35 hours of peak aging time. Melt ultrasound treatment of Al-4 wt pct Cu/TiC composite shows no significant effect on the distribution and refinement of TiC particles in the matrix. However, it partially disintegrates the TiC into Al3Ti and Al4C3 particles. The ultrasound-treated composite showed an improved hardness of about 132 VHN at 5 hours of peak aging, in comparison to that of the untreated composite, by forming denser and homogeneous CuAl2 precipitates.



One of the authors (GSV) thanks the Naval Research Board, Ministry of Defence, India (Grant No. NRB-317/MAT/13-14) for supporting this work.


  1. 1.
    S.L. Promod, S.R. Bakshi, and B.S. Murty: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2185–2207.CrossRefGoogle Scholar
  2. 2.
    G.S. Pradeep Kumar, P.G. Koppad, R. Keshavamurthy, and M. Alipour: Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 535–44.Google Scholar
  3. 3.
    R. Mitra and Y. Mahajan: Bull. Mater. Sci., 1995, vol. 18, pp. 405–34.CrossRefGoogle Scholar
  4. 4.
    C. Selcuk and A.R. Kennedy: Mater. Lett., 2006, vol. 60, pp. 3364–66.CrossRefGoogle Scholar
  5. 5.
    A.R. Kennedy and A.E. Karantzalis: Mater. Sci. Eng. A, 1999, vol. 264, pp. 122–29.CrossRefGoogle Scholar
  6. 6.
    P. Sahoo and M.J. Koczak: Mater. Sci. Eng. A, 1999, vol. 131, pp. 69–76.Google Scholar
  7. 7.
    G.S. VinodKumar, B.S. Murty, and M. Chakraborty: J. Alloys Compd., 2005, vol. 396, pp. 143–50.CrossRefGoogle Scholar
  8. 8.
    R. Bauri: Trans. Ind. Inst. Met., 2009, vol. 62, pp. 391–95.CrossRefGoogle Scholar
  9. 9.
    Y. Birol: J. Alloys Compd., 2008, vol. 454, pp. 110–17.CrossRefGoogle Scholar
  10. 10.
    A. Albiter, C.A. Leon, R.A.L. Drew, and E. Bedolla: Mater. Sci. Eng. A, 2000, vol. 289, pp. 109–15.CrossRefGoogle Scholar
  11. 11.
    Mostaed, H. Saghafian, E. Mostaed, A. Shokuhfar, and H.R. Rezaie: Mater. Charact., 2013, vol. 76, pp. 76–82.Google Scholar
  12. 12.
    L. Wang, F. Qiu, J. Liu, H. Wang, J. Wang, L Zhu, and Q. Jiang: Mater. Des., 2015, vol. 79, pp. 68–72.Google Scholar
  13. 13.
    N. Nemati, R. Khosroshahi, M. Emanmy, and A. Zolriasatein: Mater. Des., 2011, vol. 31, pp. 3718–29.CrossRefGoogle Scholar
  14. 14.
    A.R. Kennedy, D.P. Weston, and M.I. Jones: Mater. Sci. Eng. A, 2001, vol. 316, pp. 32–38.Google Scholar
  15. 15.
    X. Li, Y. Yang, and X. Cheng: J. Mater. Sci., 2004, vol. 39, pp. 3211–12.CrossRefGoogle Scholar
  16. 16.
    X. Li, Y. Yang, and D. Weiss: Metall. Sci. Technol., 2008, vol. 26 (2), p. 12–22.Google Scholar
  17. 17.
    Y. Yang and X. Li: Trans. ASME Ser. B, 2007, vol. 129, pp. 497–501.Google Scholar
  18. 18.
    G. Cao, H. Konishi, and X. Li: Mater. Sci. Eng. A, 2008, vol. 8, pp. 58–65.Google Scholar
  19. 19.
    A. Erman, J. Groza, X. Li, H. Choi, and G. Cao: Mater. Sci. Eng. A, 2012, vol. 558, pp. 39–43.CrossRefGoogle Scholar
  20. 20.
    G. Cao, J. Kobliska, H. Konishi, and X. Li: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 880–86.CrossRefGoogle Scholar
  21. 21.
    G. Cao, H. Choi, H. Konishi, S. Kou, R. Lakes, and X. Li: J. Mater. Sci., 2008, vol. 43, pp. 5521–26.CrossRefGoogle Scholar
  22. 22.
    G. Cao, H. Konishi, and X. Li: Mater. Sci. Eng. A, 2008, vol. 486, pp. 357–62.CrossRefGoogle Scholar
  23. 23.
    P. Christy-Roshini, B. Nagasivamuni, Baldev-Raj, and K.R. Ravi: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2234–39.Google Scholar
  24. 24.
    J. Nampoothiri, R. Sri-Harini, S.K. Nayak, B. Raj, and K.R. Ravi: J. Alloys Compd., 2016, vol. 683, pp. 370–78.CrossRefGoogle Scholar
  25. 25.
    Z. Liu, Q. Han, and J. Li: Composites: Part B, 2011, vol. 42, pp. 2080–84.CrossRefGoogle Scholar
  26. 26.
    H. Su, W. Gao, Z. Feng, and Z. Lu: Mater. Des., 2012, vol. 36, pp. 590–96.CrossRefGoogle Scholar
  27. 27.
    G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, pp. 319–25.CrossRefGoogle Scholar
  28. 28.
    X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.CrossRefGoogle Scholar
  29. 29.
    A. Mandal, R. Maiti, M. Chakraborty, and B.S. Murty: Mater. Sci. Eng. A, 2004, vol. 386, pp. 296–300.CrossRefGoogle Scholar
  30. 30.
    I. Dutta and D.L. Bourell: Acta Metall. Mater., 1990, vol. 38, pp. 2041–49.CrossRefGoogle Scholar
  31. 31.
    K.S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, and W.B. McNamara III: Philos. Trans. R. Soc. A, 1999, vol. 357, pp. 335–53.CrossRefGoogle Scholar
  32. 32.
    Z. Liu, Q. Han, J. Li, and W. Huang: J. Mater. Process Technol., 2012, vol. 212, pp. 365–71.CrossRefGoogle Scholar
  33. 33.
    V.H. Lopez, A.R. Kennedy, and J. Lemus: Kov. Mater., 2010, vol. 48, pp. 17–24.Google Scholar
  34. 34.
    A. Tronche, M. Vandyoussefi, and A.L. Greer: Mater. Sci. Technol., 2002, vol. 18, pp. 1072–78.CrossRefGoogle Scholar
  35. 35.
    G.S. Vinod Kumar, B.S. Murty, and M. Chakraborty: Int. J. Cast Met. Res., 2010, vol. 23, pp. 193–204.Google Scholar
  36. 36.
    B.C Pai, K.R. Ravi, and R.M. Pillai: Trans. Ind. Inst. Met., 2009, vol. 62, pp. 373–78.CrossRefGoogle Scholar
  37. 37.
    B. Guo, B. Chen, X. Zhang, Xi.Cen, X. Wang, M. Song, N. Song, J. Yi, T. Shen, and Y. Du: Carbon, 2018, vol. 135, pp. 224–35.CrossRefGoogle Scholar
  38. 38.
    K. Das and L.K. Narnaware: Mater. Sci. Eng. A, 2008, vol. 497, pp. 25–30.CrossRefGoogle Scholar
  39. 39.
    J. Banhart: ASM Handbook, ASM International, Materials Park, OH, 2016, vol. 4E, pp. 214–39.Google Scholar
  40. 40.
    S. Arakawa, T. Hatayama, K. Matsugi, and O. Yanagisawa: Scripta Mater., 2000, vol. 42, pp. 755–60.CrossRefGoogle Scholar
  41. 41.
    S.K. Varma, J. Ponce, M. Solis, S. Andrews, and D. Salas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2023–34.CrossRefGoogle Scholar
  42. 42.
    Q. Jin, G. Chen, X. Ji, X. Song, N. Hu, F. Han, and Z. Du: J. Alloys Compd., 2016, vol. 666, pp. 58–64.CrossRefGoogle Scholar
  43. 43.
    B. Zheng, T. Topping, J.E. Smugeresky, Y. Chou, A. Biswas, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 568–73.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Sean D’Brass
    • 1
  • K. R. Ravi
    • 2
  • J. Nampoothiri
    • 3
    • 4
  • K. M. Saradesh
    • 1
  • T. Rajasekaran
    • 5
  • G. S. Vinodkumar
    • 6
    Email author
  1. 1.SRM Research InstituteSRM Institute of Science and TechnologyKattankulathurIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyJodhpurIndia
  3. 3.Structural Nanomaterials LabPSG Institute of Advanced StudiesCoimbatoreIndia
  4. 4.Department of Metallurgical EngineeringPSG College of TechnologyCoimbatoreIndia
  5. 5.Department of Mechanical EngineeringSRM Institute of Science and TechnologyKattankulathurIndia
  6. 6.Department of Mechanical EngineeringSRM University-APAmaravatiIndia

Personalised recommendations