Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2547–2556 | Cite as

Investigation on the Surface Vortex Formation During Mechanical Stirring with an Axial-Flow Impeller Used in an Aluminum Process

  • Takuya YamamotoEmail author
  • Wataru Kato
  • Sergey V. Komarov
  • Yasuo Ishiwata
Article
  • 52 Downloads

Abstract

The present study investigated the mechanism of surface vortex formation in an aluminum melt vessel stirred by an axial-flow impeller mechanically. The oxide film is formed at the aluminum melt/air interface, and the movement of the interface entrains the oxide film and inclusions. Hence, the transient movement of melt–air interface is significant. The present study conducted a water model experiment and numerical simulation focusing on the movement of gas–liquid interface. The present study found that the oxide film can be entrained by two phenomena: (1) local surface vortex and (2) sloshing near the vessel wall. The local surface vortex is formed due to the pressure distribution around the impeller, and the sloshing is caused by macroinstabilities, which is generated by the discharged flow of axial-flow impeller. Besides, the shape of gas–liquid interface is dependent on the impeller shape. The axial-flow impeller gives rise to steeply curved shape of gas–liquid interface near the impeller shaft.

Notes

Acknowledgments

The present research is supported partly by the Initiative on Promotion of Supercomputing for Young or Women Researchers, Supercomputing Division, Information Technology Center, The University of Tokyo.

References

  1. 1.
    M. E. Schlesinger (2014) Aluminum Recycling, 2nd edition. CRC Press, Boca Raton.Google Scholar
  2. 2.
    J.-F. Bilodeau and Y. Kocaefe: in Light Metals, TMS, New York, 2001, pp. 1009–1015.Google Scholar
  3. 3.
    L.I. Kiss and J.F. Bilodeau: Proceedings of Conference on Metallurgists, 2001, Toronto.Google Scholar
  4. 4.
    F. Kerdouss, L. Kiss, P. Proulx, J. F. Bilodeau, C. Dupuis: Int. J. Chem. Reactor Eng., 2005, vol. 3, pp. A35. 10.2202/1542-6580.1217CrossRefGoogle Scholar
  5. 5.
    J.L. Song, M.R. Jolly, M. Kimata, W. Bujalski, and A.W. Nienow: in Proceesings of Third International Conference on CFD in the Minerals and Process Industries, 2003, pp. 65–70, Melbourne, Australia, 10–12 December 2003.Google Scholar
  6. 6.
    F. Chiti, A. Paglianti, W. Bujalski: Chem. Eng. Res. Des., 2004, vol. 82, pp. 1105-1111. 10.1205/cerd.82.9.1105.44156.CrossRefGoogle Scholar
  7. 7.
    W. Bujalski, M. Kimata, N. Nayan, J. L. Song, M. R. Jolly, A. W. Nienow: Chem. Eng. Technol., 2004, vol. 27, pp. 310-314. 10.1002/ceat.200401982.CrossRefGoogle Scholar
  8. 8.
    T. Yamamoto, K. Kato, S. V. Komarov, Y. Ueno, M. Hayashi, Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 259, pp. 409-415. 10.1016/j.jmatprotec.2018.04.025.CrossRefGoogle Scholar
  9. 9.
    T. Yamamoto, A. Suzuki, S. V. Komarov, Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 261, pp. 164-172. 10.1016/j.jmatprotec.2018.06.012.CrossRefGoogle Scholar
  10. 10.
    T. Yamamoto, Y. Fang, S. V. Komarov: Chem. Eng. Sci., 2019, vol. 197, pp. 26-36. 10.1016/j.ces.2018.12.007.CrossRefGoogle Scholar
  11. 11.
    V. S. Warke, S. Shankar, M. M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 119-126. 10.1016/j.jmatprotec.2004.10.016.CrossRefGoogle Scholar
  12. 12.
    V. S. Warke, G. Tryggvason, M. M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 112-118. 10.1016/j.jmatprotec.2004.10.017.CrossRefGoogle Scholar
  13. 13.
    M. Saternus: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 285-290.Google Scholar
  14. 14.
    E. R. Gómez, R. Zenit, C. G. Rivera, G. Trápaga, M. A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 423-435. 10.1007/s11663-012-9774-8.CrossRefGoogle Scholar
  15. 15.
    E. R. Gómez, R. Zenit, C. G. Rivera, G. Trápaga, M. A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 974-983. 10.1007/s11663-013-9845-5.CrossRefGoogle Scholar
  16. 16.
    M. Hernández-Hernández, J. L. Camacho-Martínez, C. González-Rivera, M. A. Ramírez-Argáez: J. Mater. Process. Technol., 2016, vol. 236, pp. 1-8. 10.1016/j.jmatprotec.2016.04.031.CrossRefGoogle Scholar
  17. 17.
    E. Mancilla, W. Cruz-Méndez, I. E. Garduño, C. González-Rivera, M. A. Ramírez-Argáez, G. Ascanio: Chem. Eng. Res. Des., 2017, vol. 118, pp. 158-165. 10.1016/j.cherd.2016.11.031.CrossRefGoogle Scholar
  18. 18.
    D. Abreu-López, A. Amaro-Villeda, F. A. Acosta-González, C. González-Rivera, M. A. Ramírez-Argáez: Metals 2017, vol. 7, pp. 132. 10.3390/met7040132.CrossRefGoogle Scholar
  19. 19.
    D. Abreu-López, A. Dutta, J. L. Camacho-Martínez, G. Trápaga-Martínez, M. A. Ramírez-Argáez: JOM, 2018, vol. 70, pp. 2958-2967. 10.1007/s11837-018-3147-y.CrossRefGoogle Scholar
  20. 20.
    E. Mancilla, W. Cruz-Méndez, M. A. Ramírez-Argáez, C. González-Rivera, G. Ascanio (2019): Can. J. Chem. Eng. 97(1), 1729-1740. 10.1002/cjce.23432.CrossRefGoogle Scholar
  21. 21.
    F. Czerwinski, G. Birsan: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 983-992. 10.1007/s11663-016-0879-3.CrossRefGoogle Scholar
  22. 22.
    B. Wan, W. Chen, M. Mao, Z. Fu, D. Zhu: J. Mater. Process. Technol., 2018, vol. 251, pp. 330-342. 10.1016/j.jmatprotec.2017.09.001.CrossRefGoogle Scholar
  23. 23.
    A. Ahmadpour, R. Raiszadeh, H. Doostmohammadi: Int. J. Cast Metals Res., 2014, vol. 27, pp. 221-229. 10.1179/1743133613Y.0000000100.CrossRefGoogle Scholar
  24. 24.
    D. Dispinar, S. Akhtar, A. Nrdmark, M. D. Sabatino, L. Arnberg: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3719-3725. 10.1016/j.msea.2010.01.088.CrossRefGoogle Scholar
  25. 25.
    S. Nagata: Mixing: Principles and applications, 1975, Halsted Press, New York.Google Scholar
  26. 26.
    F. Rieger, P. Ditl, V. Novak: Chem. Eng. Sci., 1979, vol. 34, pp. 397-403. 10.1016/0009-2509(79)85073-3.CrossRefGoogle Scholar
  27. 27.
    S. S. Deshpande, K. K. Kar, J. Walker, J. Pressler, W. Su: Chem. Eng. Sci., 2017, vol. 168, pp. 495-506. 10.1016/j.ces.2017.04.002.CrossRefGoogle Scholar
  28. 28.
    A. Busciglio, G. Caputo, F. Scargiali: Chem. Eng. Sci., 2013, vol. 104, pp. 868-880. 10.1016/j.ces.2013.10.019.CrossRefGoogle Scholar
  29. 29.
    T. Yamamoto, Y. Fang, S. V. Komarov: Chem. Eng. J., 2019, vol. 367, pp. 25-36. 10.1016/j.cej.2019.02.130.CrossRefGoogle Scholar
  30. 30.
    H.G. Weller: Technical Report. TR/HGW/04, OpenCFD Ltd., 2008.Google Scholar
  31. 31.
    H. Rusche: Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. thesis, Imperial Collage of Science, Technology and Medicine, London, 2002.Google Scholar
  32. 32.
    T. Yamamoto, Y. Okano, S. Dost: Int. J. Num. Meth. Fluids, 2017, vol. 83, pp. 223-244. 10.1002/fld.4267.CrossRefGoogle Scholar
  33. 33.
    H. K. Versteeg, W. Malalasekera: An introduction to computational fluid dynamics, the finite volume method, Longman Group Ltd., Harlow, 1995.Google Scholar
  34. 34.
    A. I. Kulkarni, A. W. Patwardhan: Chem. Eng. Res. Des., 2014, vol. 92, pp. 1227-1248.CrossRefGoogle Scholar
  35. 35.
    B. N. Murthy and J. B. Joshi: Chem. Eng. Sci., 2008, vol. 63, pp. 5468-5495. 10.1016/j.ces.2008.06.019.CrossRefGoogle Scholar
  36. 36.
    B. van Leer: J. Comput. Phys., 1974, vol. 14, pp. 361-370. 10.1016/0021-9991(74)90019-9.CrossRefGoogle Scholar
  37. 37.
    R. I. Issa: J. Comput. Phys., 1986, vol. 62, pp. 40-65. 10.1016/0021-9991(86)90099-9.CrossRefGoogle Scholar
  38. 38.
    Y. Dubief, F. Delcayre: J. Turbul., 2001, vol. 1, pp. N11. 10.1088/1468-5248/1/1/011.CrossRefGoogle Scholar
  39. 39.
    M. Jahoda, M. Mostek, I. Fort, P. Hasai: Can. J. Chem. Eng., 2011, vol. 89, pp. 717-724. 10.1002/cjce.20477.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Takuya Yamamoto
    • 1
    Email author
  • Wataru Kato
    • 1
  • Sergey V. Komarov
    • 1
  • Yasuo Ishiwata
    • 2
  1. 1.Graduate School of Environmental StudiesTohoku UniversityMiyagiJapan
  2. 2.Nippon Light Metal Co. LtdShizuokaJapan

Personalised recommendations