Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Basic Oxygen Furnace: Assessment of Recent Physicochemical Models

Abstract

Modeling of the basic oxygen furnace (BOF) process, both for online monitoring and fundamental research, has gained importance in steelmaking industry over the past few decades. Especially models integrating fundamental physicochemical relations are appealing. Even though a vast amount of these kind of models and submodels can be found in the literature, no recent review paper is available which thoroughly discusses the most up-to-date BOF modeling methods. This study aims to do so. In the introductory chapters, an overview is given on the assumptions and models for underlying BOF phenomena, which are frequently used in the BOF models and submodels. Focus was put on six models with emphasis on the chemical aspect of the BOF process. For each model, its assumptions are given and subsequently evaluated, highlighting both their strengths and limitations. The six different models are also compared with each other. Finally, opportunities for future research are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

Reprinted with permission from Ref. [12]

Fig. 2
Fig. 3

Reprinted with permission from Ref. [17]

Fig. 4

Reprinted with permission from Ref. [25]

Fig. 5

Reprinted with permission from Ref. [31]

Fig. 6

Reprinted with permission from Ref. [40]

Fig. 7

Reprinted with permission from Ref. [47]

Fig. 8

Reprinted with permission from Ref. [32]

Fig. 9

Reprinted with permission from Ref. [9]

Fig. 10

Reprinted with permission from Ref. [9]

Fig. 11

Reprinted with permission from Ref. [8]

Fig. 12

Reprinted with permission from Ref. [93]

References

  1. 1.

    World Steel Association: World steel in figures 2018. https://www.worldsteel.org/. Accessed 16 Jan 2019.

  2. 2.

    R.D. Pehlke, W.F. Porter, R.F. Urban, and J.M. Gaines: BOF Steelmaking, Introduction, Theory and Design, vol. 1, The Iron and Steel Institute of the American Institute of Mining, New York, 1974.

  3. 3.

    E.T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials, London, 1996.

  4. 4.

    S. Seetharaman, A. McLean, R. Guthrie, and S. Sridhar: Treatise on Process Metallurgy, vol. 2, Elsevier, Oxford, 2013.

  5. 5.

    J. Martinsson and D. Sichen: ISIJ International, 2019, vol. 59, pp. 46–50.

  6. 6.

    Publications Office of the European Union: Imphos. https://publications.europa.eu/en/publication-detail/-/publication/8aecbb7c-f77f-4ee7-bc38-9ebb13b52faf/language-en. Accessed 6 Nov 2018.

  7. 7.

    7 H.W. Meyer, W.F. Porter, G.C. Smith, and J. Szekely: JOM, 1968, vol. 20, pp. 35–42.

  8. 8.

    R. Sarkar, P. Gupta, S. Basu, and N.B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46, pp. 961–76.

  9. 9.

    B.K. Rout, G. Brooks, M.A. Rhamdhani, Z. Li, F.N.H. Schrama, and J. Sun: Metall. Mater. Trans. B, 2018, vol. 49, pp. 537–57.

  10. 10.

    B.K. Rout, G. Brooks, and M. Rhamdhani: AISTech 2015 Iron and Steel Technology Conference, 2015, pp. 3225–37.

  11. 11.

    11 E. Chen and K.S. Coley: Ironmaking & Steelmaking, 2010, vol. 37, pp. 541–545.

  12. 12.

    N. Dogan: PhD thesis, Swinburne University of Technology, 2011.

  13. 13.

    A.I. van Hoorn, J.T. Konynenburg, and P.J. Kreyger: in The Role of Slag in Basic Oxygen Steelmaking Processes, W.K. Lu, ed., McMaster University Press, Toronto, 1976.

  14. 14.

    A.I. Hoorn, J.T. Konijnenburg, and P.J. Kreijger: Proceedings McMaster Symposium on Iron and Steelmaking, 1976, p. 1–2.

  15. 15.

    15 C. Cicutti, M. Valdez, T. Perez, R. Donayo, and J. Petroni: Latin American applied research, 2002, vol. 32, pp. 237–240.

  16. 16.

    K.S. Coley: Journal of Mining and Metallurgy B: Metallurgy, 2013, vol. 49, pp. 191–9.

  17. 17.

    17 Q. Li, M. Li, S. Kuang, and Z. Zou: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1494–509.

  18. 18.

    18 N.A. Molloy: Journal of the iron and steel institute, 1970, vol. 208, p. 943-50.

  19. 19.

    19 H.C. Araújo, E.F. Rodrigues, and E.M. Leal: REM - International Engineering Journal, 2018, vol. 71, pp. 53–7.

  20. 20.

    20 N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: steel research international, 2011, vol. 82, pp. 587–94.

  21. 21.

    21 R. Sambasivam, S.N. Lenka, F. Durst, M. Bock, S. Chandra, and S.K. Ajmani: Metall. Mater. Trans. B, 2007, vol. 38, pp. 45–53.

  22. 22.

    22 S.C. Koria and K.W. Lange: Steel Research, 1987, vol. 58, pp. 421–6.

  23. 23.

    D. Mombelli, C. Mapelli, S. Barella, A. Gruttadauria, R. Sosio, G. Valentino, and V. Ancona: Steel Res. Int., 2018, vol. 89, p. 1700467.

  24. 24.

    K.S. Coley, E. Chen, and M. Pomeroy: in Celebrating the Megascale, P.J. Mackey, E.J. Grimsey, R.T. Jones, and G.A. Brooks, eds., Springer, New York, 2016, pp. 289–302.

  25. 25.

    B.K. Rout, G. Brooks, Subagyo, M.A. Rhamdhani, and Z. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3350–61.

  26. 26.

    26 Q.L. He and N. Standish: ISIJ International, 1990, vol. 30, pp. 305–9.

  27. 27.

    R. Li and R.L. Harris: Pyrometallurgy 95 Conference Proceedings, IMM, London, 1995, p. 107.

  28. 28.

    B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice-Hall, New York, 1993.

  29. 29.

    G. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Ions: ISIJ Int., 2003, vol. 43, pp. 983–9.

  30. 30.

    S. Sabah, M. Alam, G. Brooks, and J. Naser: Scanmet IV 4th International Conference, Lulea, Sweden, 2012.

  31. 31.

    31 G. Brooks, Y. Pan, and K. Coley: Metall. Mater. Trans. B, 2005, vol. 36, pp. 525–535.

  32. 32.

    32 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1086–1092.

  33. 33.

    33 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1093–1101.

  34. 34.

    34 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1102–1109.

  35. 35.

    N. Dogan, G. Brooks, and M. Rhamdhani: Faculty of Engineering - Papers (Archive), 2010, pp. 1091–1101.

  36. 36.

    36 S.C. Koria and K.W. Lange: Metall. Mater. Trans. B, 1984, vol. 15, pp. 109–16.

  37. 37.

    37 E.W. Mulholland, G.S.F. Hazeldean, and M.W. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632–639.

  38. 38.

    38 C.L. Molloseau and R.J. Fruehan: Metall. Mater. Trans. B, 2002, vol. 33, pp. 335–44.

  39. 39.

    39 B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B, 1996, vol. 27, pp. 717–30.

  40. 40.

    40 H. Sun: ISIJ International, 2006, vol. 46, pp. 1560–9.

  41. 41.

    41 K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2343–53.

  42. 42.

    M.-A. Van Ende and I.-H. Jung: in Computational Materials System Design, D. Shin and J. Saal, eds., Springer, Cham, 2018, pp. 47–66.

  43. 43.

    43 A. Kruskopf and V.-V. Visuri: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3281–300.

  44. 44.

    44 J. Ruuska, A. Sorsa, J. Lilja, and K. Leiviskä: IFAC-PapersOnLine, 2017, vol. 50, pp. 13784–9.

  45. 45.

    45 F. He and L. Zhang: Journal of Process Control, 2018, vol. 66, pp. 51–8.

  46. 46.

    46 C. Kattenbelt and B. Roffel: Metall. Mater. Trans. B, 2008, vol. 39, pp. 764–9.

  47. 47.

    47 M.-A. van Ende, Y.-M. Kim, M.-K. Cho, J. Choi, and I.-H. Jung: Metall. Mater. Trans. B, 2011, vol. 42, pp. 477–89.

  48. 48.

    B. Deo and A.K. Shukla: 5th International Congress on the Science and Technology of Steelmaking, Dresden, Germany, 2012.

  49. 49.

    49 C. Chigwedu, J. Kempken, and W. Pluschkell: Stahl und Eisen, 2006, vol. 126, pp. 25–31.

  50. 50.

    C. Kattenbelt: PhD thesis, University of Twente, 2008.

  51. 51.

    51 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ International, 2009, vol. 49, pp. 1474–82.

  52. 52.

    G.A. Brooks, M.A. Rhamdhani, K.S. Coley, G. Subagyo, and Y. Pan: Metall. Mater. Trans. B, 2009, vol. 40, pp. 353–62.

  53. 53.

    53 D.R. Sain and G.R. Belton: Metall. Mater. Trans. B, 1976, vol. 7, pp. 235–44.

  54. 54.

    54 H.G. Lee and Y.K. Rao: Ironmaking & Steelmaking, 1988, vol. 15, pp. 238–243.

  55. 55.

    55 P.A. Distin, G.D. Hallett, and F.D. Richardson: J Iron Steel Inst, 1968, vol. 206, pp. 821–833.

  56. 56.

    56 D.R. Sain and G.R. Belton: Metall. Mater. Trans. B, 1978, vol. 9, pp. 403–7.

  57. 57.

    H. Lohe: VDI-Zeitschrift, 1967.

  58. 58.

    B.K. Rout, G. Brooks, M. Akbar-Rhamdhani, Z. Li, F.N.H. Schrama, and A. Overbosch: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1022–33.

  59. 59.

    B.K. Rout, G.A. Brooks, Z. Li, and M.A. Rhamdhani: AISTech 2016 Proceedings, 2016, pp. 1019–26.

  60. 60.

    B.K. Rout, G. Brooks, M. Akbar-Rhamdhani, Z. Li, F.N.H. Schrama, and W. van der Knoop: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2191–2208.

  61. 61.

    61 K. Ito and R.J. Fruehan: Metall. Mater. Trans. B, 1989, vol. 20, pp. 509–14.

  62. 62.

    62 B.T. Chao: Journal of Heat Transfer, 1969, vol. 91, pp. 273–280.

  63. 63.

    63 A.K. Hewage, B.K. Rout, G. Brooks, and J. Naser: Ironmaking & Steelmaking, 2016, vol. 43, pp. 358–370.

  64. 64.

    64 K.-C. Chou, U.B. Pal, and R.G. Reddy: ISIJ international, 1993, vol. 33, pp. 862–868.

  65. 65.

    65 K. Narita, T. Makino, H. Matusumo, A. Hikosa, and J. Katsuda: Tetsu-to-Hagané, 1983, vol. 69, pp. 1722–1729.

  66. 66.

    66 H. Suito and R. Inoue: ISIJ international, 1995, vol. 35, pp. 266–271.

  67. 67.

    F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press (Elsevier), London, 1974.

  68. 68.

    68 Y. Ogasawara, Y. Miki, Y. Uchida, and N. Kikuchi: ISIJ international, 2013, vol. 53, pp. 1786–1793.

  69. 69.

    69 S.-M. Jung, C.-H. Rhee, and D.-J. Min: ISIJ International, 2002, vol. 42, pp. 63–70.

  70. 70.

    70 J.M. Park: Steel Research, 2002, vol. 73, pp. 39–43.

  71. 71.

    71 C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, and J. Melançon: Calphad, 2016, vol. 54, pp. 35–53.

  72. 72.

    Y. Lytvynyuk, J. Schenk, M. Hiebler, and A. Sormann: steel research international, 2014, vol. 85, pp. 537–543.

  73. 73.

    73 Y. Lytvynyuk, J. Schenk, M. Hiebler, and A. Sormann: steel research international, 2014, vol. 85, pp. 544–563.

  74. 74.

    Y. Lytvynyuk, J Schenk, M. Hiebler, and H. Mizelli: 6th European Oxygen Steelmaking Conference, Stockholm, Sweden, 2011.

  75. 75.

    B.M. Boychenko, V.B. Okhotskiy, and P.S. Kharlashin: Dnipro-VAL: Dnipropetrovsk, Ukraine.

  76. 76.

    76 S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H. Jeffes: Ironmaking & Steelmaking, 1984, vol. 85, pp. 202–13.

  77. 77.

    The Japan Society for the Promotion of Science and The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, 1988.

  78. 78.

    78 G.K. Sigworth and J.F. Elliott: Metal Science, 1974, vol. 8, pp. 298–310.

  79. 79.

    V.A. Grigoryan, L.N. Belyanchikov, and A.Y. Stomakhin: Gases in Steel and Metal Quality, Metallurgiya, Moscow, 1983.

  80. 80.

    80 S. Kitamura, H. Shibata, and N. Maruoka: steel research international, 2008, vol. 79, pp. 586–90.

  81. 81.

    81 S. Kitamura, T. Kitamura, K. Shibata, Y. Mizukami, S. Mukawa, and J. Nakagawa: ISIJ international, 1991, vol. 31, pp. 1322–1328.

  82. 82.

    E.T. Turkdogan, R.J. Fruehan, and R.J. Fruehan: The Making, Shaping and Treating of Steel, Steelmaking and Refining, Vol. 2, AISE Steel Foundation, Pittsburgh, 1998.

  83. 83.

    83 E.T. Turkdogan: ISIJ International, 2001, vol. 41, pp. 930–2.

  84. 84.

    84 A. Kruskopf: Metall. Mater. Trans. B, 2017, vol. 48, pp. 619–31.

  85. 85.

    85 A. Kruskopf: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1195–206.

  86. 86.

    86 A. Chatterjee, N.-O. Lindfors, and J. Wester: SEAISI Q., July 1976, 5-3, 6-19.

  87. 87.

    87 M.H.A. Piro, S. Simunovic, T.M. Besmann, B.J. Lewis, and W.T. Thompson: Computational Materials Science, 2013, vol. 67, pp. 266–72.

  88. 88.

    88 M.H.A. Piro and S. Simunovic: Calphad, 2012, vol. 39, pp. 104–10.

  89. 89.

    89 J.R. Taylor and A.T. Dinsdale: Calphad, 1990, vol. 14, pp. 71–88.

  90. 90.

    90 S. Petersen and K. Hack: International Journal of Materials Research, 2007, vol. 98, pp. 935–45.

  91. 91.

    Schlackenatlas, Düsseldorf, Stahleisen, 1981.

  92. 92.

    92 M.-A. Van Ende and I.-H. Jung: Metall. Mater. Trans. B, 2017, vol. 48, pp. 28–36.

  93. 93.

    M.-A. Van Ende and I.-H. Jung: Proceedings Asia Steel International Conference 2015, The Iron and Steel Institute of Japan, Yokohama, 2015.

  94. 94.

    94 A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31, pp. 651–9.

  95. 95.

    95 A.D. Pelton and P. Chartrand: Metall and Mat Trans A, 2001, vol. 32, pp. 1355–60.

  96. 96.

    96 P. Chartrand and A.D. Pelton: Metall and Mat Trans A, 2001, vol. 32, pp. 1397–407.

  97. 97.

    97 A.D. Pelton, P. Chartrand, and G. Eriksson: Metall and Mat Trans A, 2001, vol. 32, pp. 1409–16.

  98. 98.

    98 M. Hillert: Journal of Alloys and Compounds, 2001, vol. 320, pp. 161–76.

  99. 99.

    99 C.W. Bale and A.D. Pelton: Metall and Mat Trans A, 1990, vol. 21, pp. 1997–2002.

  100. 100.

    100 I.-H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35, pp. 493–507.

  101. 101.

    H. Gaye, M. Wanin, P. Gugliermina, and P. Schittly: Rev. Metall., 1985, vol. 82, p. 121.

  102. 102.

    102 A.N. Grundy, H. Liu, I.-H. Jung, S.A. Decterov, and A.D. Pelton: IJMR, 2008, vol. 99, pp. 1185–94.

  103. 103.

    103 A.N. Grundy, I.-H. Jung, A.D. Pelton, and S.A. Decterov: IJMR, 2008, vol. 99, pp. 1195–209.

  104. 104.

    104 A.N. Grundy, I.-H. Jung, A.D. Pelton, and S.A. Decterov: International Journal of Materials Research, 2008, vol. 99, pp. 1195–1209.

  105. 105.

    105 S. Khadhraoui, H.-J. Odenthal, S. Das, M. Schlautmann, K. Hack, B. Glaser, and R. Woolf: La Metallurgia Italiana, 2018, vol. 11/12, pp. 5–16.

  106. 106.

    M. Schlautmann, B. Kleimt, S. Khadhraoui, K. Hack, P. Monheim, B. Glaser, R. Antonic, M. Adderley, and F. Schrama: 3rd European Steel Technology and Application Days (ESTAD), Vienna, Austria, 2017.

  107. 107.

    107 F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka: steel research international, 2010, vol. 81, pp. 617–22.

  108. 108.

    108 D. Baricová, A. Pribulová, P. Futáš, B. Buľko, P. Demeter, D. Baricová, A. Pribulová, P. Futáš, B. Buľko, and P. Demeter: Metals, 2018, vol. 8, p. 844.

  109. 109.

    109 K.C. Mills and B.J. Keene: International Materials Reviews, 1987, vol. 32, pp. 1–120.

  110. 110.

    S.A. Decterov, A.N. Grundy, I.-H. Jung, and A.D. Pelton: AIP Conference Proceedings, vol. 963, AIP, 2007, pp. 404–07.

  111. 111.

    111 A. Kondratiev, P.C. Hayes, and E. Jak: ISIJ international, 2006, vol. 46, pp. 368–374.

  112. 112.

    112 G.-H. Zhang, K.-C. Chou, and K. Mills: Metall. Mater. Trans. B, 2014, vol. 45, pp. 698–706.

  113. 113.

    113 Z. Liu, L. Pandelaers, B. Blanpain, and M. Guo: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2469–86.

  114. 114.

    114 R. Roscoe: British Journal of Applied Physics, 1952, vol. 3, p. 267.

  115. 115.

    115 A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1027–1032.

  116. 116.

    116 M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani: ISIJ International, 2007, vol. 47, pp. 935–9.

  117. 117.

    117 Butler John Alfred Valentine and Kendall James Pickering: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932, vol. 135, pp. 348–75.

  118. 118.

    118 S.-K. Kim, W. Wang, and Y.-B. Kang: Met. Mater. Int., 2015, vol. 21, pp. 765–74.

  119. 119.

    119 M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ International, 2007, vol. 47, pp. 38–43.

Download references

Acknowledgments

This study was supported by VLAIO, the Flanders Innovation & Entrepreneurship Agency, in cooperation with ArcelorMittal under Grant HBC.2017.0205. I. Bellemans holds a research grant from Ghent University (BOF17/PDO/012). L. De Vos wants to thank S. De Clercq for proofreading of the manuscript.

Author information

Correspondence to Lotte De Vos or Inge Bellemans or Kim Verbeken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 29, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Vos, L., Bellemans, I., Vercruyssen, C. et al. Basic Oxygen Furnace: Assessment of Recent Physicochemical Models. Metall and Materi Trans B 50, 2647–2666 (2019). https://doi.org/10.1007/s11663-019-01677-y

Download citation