Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2969–2981 | Cite as

An EXAFS and XANES Study of V, Ni, and Fe Speciation in Cokes for Anodes Used in Aluminum Production

  • Gøril Jahrsengene
  • Hannah C. Wells
  • Camilla Sommerseth
  • Arne Petter Ratvik
  • Lorentz Petter Lossius
  • Katie H. Sizeland
  • Peter Kappen
  • Ann Mari Svensson
  • Richard G. HaverkampEmail author
Article
  • 76 Downloads

Abstract

Lower-quality petroleum coke with higher levels of sulfur and metal impurities will have to be used for the manufacturing of anodes for aluminum production in the future. The sulfur and metallic impurities affect the anode properties in the aluminum production process, but the chemical identity of the metal species in the coke is not known. In this study, industrial petroleum cokes with high sulfur levels were analyzed by X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) in order to determine the identity of the V, Ni, and Fe impurities. The XANES spectra were compared with pure-phase standards. EXAFS was used to compare the impurity metal structures with known crystal structures. It was found that V is present mainly as hexagonal V3S4. Ni is present mainly as hexagonal NiS, and Fe is present as hexagonal FeS. This knowledge of the chemical states of the metal elements in coke, which are known to affect anode performance, is the first step in understanding the mechanism of the action of these elements on anode reactivity.

Abbreviation

COD

Crystallography open database

CPC

Calcined petroleum coke

EXAFS

Extended X-ray absorption fine structure

LCF

Linear combination fit

XAFS

X-ray absorption fine structure

XANES

X-ray absorption near edge structure

XAS

X-ray absorption spectroscopy

XRD

X-ray diffraction

XRF

X-ray fluorescence

Notes

Acknowledgments

Financial supports from the Norwegian Research Council and the partners Hydro Aluminum, Alcoa, Elkem Carbon, and Skamol through the project “Reactivity of Carbon and Refractory Materials used in Metal Production Technology” (CaRMa) are duly acknowledged. This research was undertaken on the XAS beamline at the Australian Synchrotron, a part of the Australian Nuclear Science and Technology Organization (ANSTO).

Supplementary material

11663_2019_1676_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1828 kb)

References

  1. 1.
    J. Thonstad, P. Fellner, G. M. Haarberg, J. Híveš, H. Kvande and Å. Sterten: Aluminium electrolysis : fundamentals of the Hall-Héroult process. 3rd ed. ed. (Aluminium-Verlag, Düsseldorf, 2001).Google Scholar
  2. 2.
    L. Edwards, JOM 2015, vol. 67, pp. 308-321.CrossRefGoogle Scholar
  3. 3.
    G. J. Houston and H. A. Øye: Consumption of anode carbon during aluminium electrolysis. (Aluminium-Verlag, Düsseldorf, 1985).Google Scholar
  4. 4.
    T. Eidet and J. Thonstad (1997) Light Met. 1997, pp. 436-437.Google Scholar
  5. 5.
    Z.Y. Li, NB Zhang and LY Wen, Asian J. Chem. 2016, vol. 28, pp. 1703-1707.CrossRefGoogle Scholar
  6. 6.
    L. Edwards: Light Metals, Springer, Cham, 2014, pp. 1093–98.Google Scholar
  7. 7.
    T. Eidet, J. Thonstad, and M. Sørlie: Light Metals, TMS, Warrendale, PA, 1997, pp. 511–17.Google Scholar
  8. 8.
    J. dos Santos Batista and B. I. da Silveira, Mater. Res. 2008, vol. 11, pp. 387-390.CrossRefGoogle Scholar
  9. 9.
    S.M. Hume, W.K. Fischer, R.C. Perruchoud, J.B. Metson, and J.B. Baker, Light Met. 1993, pp. 535–41.Google Scholar
  10. 10.
    Y. Di Bensah and T. Foosnaes, J. Eng. Appl. Sci. 2010, vol. 5, pp. 35-43.Google Scholar
  11. 11.
    M. Sørlie (1994) Light Met. vol. 1994, p. 659–665.Google Scholar
  12. 12.
    S. J. Hay, J. B. Metson and M. M. Hyland, Ind. Eng. Chem. Res. 2004, vol. 43, pp. 1690-1700.CrossRefGoogle Scholar
  13. 13.
    J. Xiao, Q. Zhong, F. Li, J. Huang, Y. Zhang and B. Wang, Energy Fuels 2015, vol. 29, pp. 3345-3352.CrossRefGoogle Scholar
  14. 14.
    Q. Zhong, J. Xiao, H. Du and Z. Yao, Energy Fuels 2017, vol. 31, pp. 4539-4547.CrossRefGoogle Scholar
  15. 15.
    J. Xiao, S.-Y. Deng, Q.-F Zhong and S.-L. Ye, T. Nonferr. Metal. Soc. 2014, vol. 24, pp. 3702-3709.Google Scholar
  16. 16.
    G. Jahrsengene, H. C. Wells, S. Rørvik, A. P. Ratvik, R. G. Haverkamp and A. M. Svensson, Metall. Mater. Trans. B 2018, vol. 49, pp. 1434-1443.CrossRefGoogle Scholar
  17. 17.
    G. Caumette, C. P. Lienemann, I. Merdrignac, B. Bouyssiere and R. Lobinski, J. Anal. Atom. Spectrom. 2009, vol. 24, pp. 263-276.CrossRefGoogle Scholar
  18. 18.
    J. Goulon, A. Retournard, P. Friant, C. Goulon-Ginet, C. Berthe, J. Muller, J. Poncet, R. Guilard, J. Escalier and B. Neff, J. Chem. Soc. Dalton 1984, vol. 6, pp. 1095-1103.CrossRefGoogle Scholar
  19. 19.
    G. P. Dechaine and M. R. Gray, Energy Fuels 2010, vol. 24, pp. 2795-2808.CrossRefGoogle Scholar
  20. 20.
    J. G. Reynolds and W. R. Biggs, Acc. Chem. Res. 1988, vol. 21, pp. 319-326.CrossRefGoogle Scholar
  21. 21.
    John G. Reynolds, Emilio J. Gallegos, Richard H. Fish and John J. Komlenic, Energy Fuels 1987, vol. 1, pp. 36-44.CrossRefGoogle Scholar
  22. 22.
    P. Kappen and G. Ruben: Sakura: A Tool to Pre-process XAS Data. http://archive.synchrotron.org.au/index.php/aussyncbeamlines/x-ray-absorption-spectroscopy/sakura.
  23. 23.
    B. Ravel and M. Newville, J. Synchrotron Rad. 2005, vol. 12, pp. 537-541.CrossRefGoogle Scholar
  24. 24.
    S. Graulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck and A. Le Bail, J. Appl. Crystallogr. 2009, vol. 42, pp. 726-729.CrossRefGoogle Scholar
  25. 25.
    G. Jahrsengene, H.C. Wells, C. Sommerseth, A.P. Ratvik, L.P. Lossius, R.G. Haverkamp, and A.M. Svensson: Travaux ICSOBA, 2017, vol. 46, pp 617-624.Google Scholar
  26. 26.
    M. A. Duchesne, J. Nakano, Y. Hu, A. MacLennan, J. Bennett, A. Nakano and R. W. Hughes, Fuel 2018, vol. 227, pp. 279-288.CrossRefGoogle Scholar
  27. 27.
    B. M. Rytting, I. D. Singh, P. K. Kilpatrick, M. R. Harper, A. S. Mennito and Y. Zhang, Energy Fuels 2018, vol. 32, pp. 5711-5724.CrossRefGoogle Scholar
  28. 28.
    G. Liu, X. Xu and J. Gao, Energy Fuels 2004, vol. 18, pp. 918-923.CrossRefGoogle Scholar
  29. 29.
    J. T. Miller and R. B. Fisher, Energy Fuels 1999, vol. 13, pp. 719-727.CrossRefGoogle Scholar
  30. 30.
    J. A. Nesbitt and M. B. J. Lindsay, Environ. Sci. Technol. 2017, vol. 51, pp. 3102-3109.CrossRefGoogle Scholar
  31. 31.
    J. A. Nesbitt, J. M. Robertson, L. A. Swerhone and M. B. J. Lindsay, FACETS 2018, vol. 3, pp. 469-486.CrossRefGoogle Scholar
  32. 32.
    J. A. Nesbitt, M. B. J. Lindsay and N. Chen, Appl. Geochem. 2017, vol. 76, pp. 148-158.CrossRefGoogle Scholar
  33. 33.
    Z. J. Zhou, Q. J. Hu, X. Liu, G. S. Yu and F. C. Wang, Energy Fuels 2012, vol. 26, pp. 1489-1495.CrossRefGoogle Scholar
  34. 34.
    J.G. Rolle and Y.K. Hoang: Light Metals, TMS, Warrendale, PA, 1995, pp. 741–45.Google Scholar
  35. 35.
    L. Ren, R. Wei and Y. Gao, Fuel 2017, vol. 190, pp. 245-252.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand
  3. 3.SINTEF IndustryTrondheimNorway
  4. 4.Hydro Aluminum AS, Primary Metal TechnologyÅrdalNorway
  5. 5.ANSTOLucas HeightsAustralia
  6. 6.Australian Synchrotron, ANSTOClaytonAustralia

Personalised recommendations