Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2815–2827 | Cite as

Microstructure and Properties of Inconel 718 Fabricated by Directed Energy Deposition with In-Situ Ultrasonic Impact Peening

  • Yachao Wang
  • Jing ShiEmail author


Many inherent issues, such as the detrimental residual stress, columnar grains with anisotropy, and weak mechanical properties, have severely impeded the adoption of metal additive manufacturing (AM) techniques including powder bed fusion and directed energy deposition (DED) processes. In this study, a hybrid AM process that consists of layer-wise laser metal deposition (i.e., a DED process) and in-situ ultrasonic impact peening (UIP) was applied to obtain Inconel 718 superalloy workpieces. Also, for further property enhancement, a post-heat treatment was applied to the deposited material obtained by the hybrid AM process. Scanning electron microscopy and transmission electron microscope were used to investigate the microstructure morphology and reveal the underlying strengthening mechanism. Electron backscatter diffraction was employed to quantitatively study the microstructure resulted from the hybrid AM process and the post-heat treatment. The profile of residual stress along the depth direction was obtained through X-ray diffraction. The results demonstrate that this hybrid AM process is capable of producing high-quality metal parts with significantly refined microstructure, and beneficial compressive residual stress along the depth into surface. Severe plastic strains are introduced by UIP, and the resulted mechanical twinning and dynamic recrystallization play an important role in refining microstructure. The material microstructure is further refined down to 100 µm, and the texture anisotropy is significantly diminished after solution treatment at 980 °C for 1 hour. Under the as-built condition, in-situ ultrasonic peening alters the residual stress component from a tensile state to an overall compressive state with a maximum value of − 190 MPa within the range of measurement depth.



The authors wish to acknowledge the funding support from the National Science Foundation (CMMI# 1563002 and 1746147).


  1. 1.
    W. E. Frazier: Journal of Materials Engineering and Performance, 2014, Vol. 23, PP. 1917–1928.CrossRefGoogle Scholar
  2. 2.
    J. J. Lewandowski, and M. Seifi: Annual Review of Materials Research, 2016, Vol. 46, PP. 151–186.CrossRefGoogle Scholar
  3. 3.
    D.M. Jacobson and G. Bennett: in Solid Freeform Fabrication Symposium, Austin, TX, Aug, 2006, 2006, pp. 14–16.Google Scholar
  4. 4.
    G. Strano, L. Hao, R. M. Everson, and K. E. Evans: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 589–597.CrossRefGoogle Scholar
  5. 5.
    P. Mercelis, and J.-P. Kruth: Rapid Prototyping Journal, 2006, Vol. 12, PP. 254–265.CrossRefGoogle Scholar
  6. 6.
    G. P. Dinda, A. K. Dasgupta, and J. Mazumder: Materials Science and Engineering: A, 2009, Vol. 509, PP. 98–104.CrossRefGoogle Scholar
  7. 7.
    H. Qi, M. Azer, and A. Ritter: Metallurgical and Materials Transactions A, 2009, Vol. 40, PP. 2410–2422.CrossRefGoogle Scholar
  8. 8.
    D. H. Smith, J. Bicknell, L. Jorgensen, B. M. Patterson, N. L. Cordes, I. Tsukrov, and M. Knezevic: Materials Characterization, 2016, Vol. 113, PP. 1–9.CrossRefGoogle Scholar
  9. 9.
    C. Sanz, and V. G. Navas: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 2126–2136.CrossRefGoogle Scholar
  10. 10.
    B. AlMangour, and J.-M. Yang: Materials & Design, 2016, Vol. 110, PP. 914–924.CrossRefGoogle Scholar
  11. 11.
    B. AlMangour, and J.-M. Yang: JOM, 2017, Vol. 69, PP. 2309–2313.CrossRefGoogle Scholar
  12. 12.
    N. E. Uzan, S. Ramati, R. Shneck, N. Frage, and O. Yeheskel: Additive Manufacturing, 2018, Vol. 21, PP. 458–464.CrossRefGoogle Scholar
  13. 13.
    W. Guo, R. Sun, B. Song, Y. Zhu, F. Li, Z. Che, B. Li, C. Guo, L. Liu, and P. Peng: Surface and Coatings Technology, 2018, Vol. 349, PP. 503–510.CrossRefGoogle Scholar
  14. 14.
    S. Shiva, I.A. Palani, C.P. Paul, and B. Singh: Application of Lasers in Manufacturing, Springer, Berlin, 2019, pp. 1–20.CrossRefGoogle Scholar
  15. 15.
    J. Donoghue, A. A. Antonysamy, F. Martina, P. A. Colegrove, S. W. Williams, and P. B. Prangnell: Materials Characterization, 2016, Vol. 114, PP. 103–114.CrossRefGoogle Scholar
  16. 16.
    W. Zhao, G. C. Zha, M. Z. Xi, and S. Y. Gao: Journal of Materials Engineering and Performance, 2018, Vol. 27, PP. 1746–1752.CrossRefGoogle Scholar
  17. 17.
    N. Kalentics, E. Boillat, P. Peyre, C. Gorny, C. Kenel, C. Leinenbach, J. Jhabvala, and R. E. Logé: Materials & Design, 2017, Vol. 130, PP. 350–356.CrossRefGoogle Scholar
  18. 18.
    M. Zhang, C. Liu, X. Shi, X. Chen, C. Chen, J. Zuo, J. Lu, and S. Ma: Appl. Sci., 2016, vol. 6 (11), art. no. 304, Scholar
  19. 19.
    J. Gale, and A. Achuhan: Rapid Prototyping Journal, 2017, Vol. 23, PP. 1185–1194.CrossRefGoogle Scholar
  20. 20.
    G. Çam, and M. Koçak: International Materials Reviews, 1998, Vol. 43, PP. 1–44.CrossRefGoogle Scholar
  21. 21.
    C. Slama, C. Servant, and G. Cizeron: Journal of Materials Research, 1997, Vol. 12, PP. 2298–2316.CrossRefGoogle Scholar
  22. 22.
    P. L. Blackwell: Journal of Materials Processing Technology, 2005, Vol. 170, PP. 240–246.CrossRefGoogle Scholar
  23. 23.
    A. Thomas, M. El-Wahabi, J. M. Cabrera, and J. M. Prado: Journal of Materials Processing Technology, 2006, Vol. 177, PP. 469–472.CrossRefGoogle Scholar
  24. 24.
    J. J. Schirra, R. H. Caless, and R. W. Hatala: Superalloys, 1991, Vol. 718, PP. 375–388.CrossRefGoogle Scholar
  25. 25.
    P. K. Gokuldoss, S. Kolla, and J. Eckert: Materials, 2017, vol. 10 (6), art. no. 672, Scholar
  26. 26.
    S. Prabhakaran, A. Kulkarni, G. Vasanth, S. Kalainathan, P. Shukla, and V. K. Vasudevan: Applied Surface Science, 2018, Vol. 428, PP. 17–30.CrossRefGoogle Scholar
  27. 27.
    J. Z. Lu, K. Y. Luo, Y. K. Zhang, G. F. Sun, Y. Y. Gu, J. Z. Zhou, X. D. Ren, X. C. Zhang, L. F. Zhang, and K. M. Chen: Acta Materialia, 2010, Vol. 58, PP. 5354–5362.CrossRefGoogle Scholar
  28. 28.
    H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu: Acta Materialia, 2003, Vol. 51, PP. 1871–1881.CrossRefGoogle Scholar
  29. 29.
    M. Wang, R. Xin, B. Wang, and Q. Liu: Materials Science and Engineering: A, 2011, Vol. 528, PP. 2941–2951.CrossRefGoogle Scholar
  30. 30.
    X. Wang, E. Brünger, and G. Gottstein: Scripta Materialia, 2002, Vol. 46, PP. 875–880.CrossRefGoogle Scholar
  31. 31.
    R. P. Singh, J. M. Hyzak, T. E. Howson, and R. R. Biederman: Superalloys, 1991, Vol. 718, PP. 205–215.CrossRefGoogle Scholar
  32. 32.
    Y. Jin, M. Bernacki, A. Agnoli, B. Lin, G. Rohrer, A. Rollett, and N. Bozzolo: Metals, 2016, vol. 6 (1), art. no. 5, Scholar
  33. 33.
    J. F. Radavich: in Conference proceedings on superalloy, 1989, 1989, vol. 718, pp. 229–40.Google Scholar
  34. 34.
    Z. Zhang, Y. Feng, Q. Tan, J. Zou, J. Li, X. Zhou, G. Sun, and Y. Wang: Mater. Des., 2019, vol. 166, art. no. 107603, Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Mechanical & Materials Engineering, College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations