Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2636–2646 | Cite as

Interfacial Reaction Between High-Al Steel and CaO-Al2O3-Based Mold Fluxes with Different CaO/Al2O3 Ratios at 1773 K (1500 °C)

  • Jian Yang
  • Hongji Cui
  • Jianqiang ZhangEmail author
  • Oleg Ostrovski
  • Chen Zhang
  • Dexiang Cai


The reaction between high-Al steel and CaO-Al2O3-based mold fluxes with different CaO/Al2O3 ratios was investigated at 1773 K (1500 °C). The increase of CaO/Al2O3 ratio from 1 to 3 accelerated the accumulation of Al2O3 in the flux and reduction of Na2O, but had no significant effect on the reduction of SiO2 and B2O3. The microstructure of flux-steel interfaces showed that emulsification occurred in the reaction between steel and mold flux. The emulsification was affected by the precipitation of crystals in the flux after the change of flux composition due to the interfacial reaction.



Financial supports from Baosteel-Australia Joint Research and Development Centre (BAJC) (BA16006) and Australian Research Council (ARC) Industrial Transformation Hub (IH140100035) are greatly acknowledged.


  1. 1.
    O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer: Int. J. Plasticity., 2000, vol. 16, pp. 1391-409.CrossRefGoogle Scholar
  2. 2.
    D. R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters and D. Raabe: Acta Mater., 2013, vol.61, pp. 494-510.CrossRefGoogle Scholar
  3. 3.
    K. Sato, M. Ichinose, Y. Hirotsu and Y. Inoue: ISIJ Int., 1989, vol.29, pp. 868-77.CrossRefGoogle Scholar
  4. 4.
    A. Dumay, J. P. Chateau, S. Allain, S. Migot and O. Bouaziz: Mater. Sci. Eng. A, 2008, vol.483-484, pp. 184-87.CrossRefGoogle Scholar
  5. 5.
    M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee and Y.-B. Kang: Metall. Mater. Trans. B, 2013, vol.44, pp. 299-308.CrossRefGoogle Scholar
  6. 6.
    Y.-B. Kang, M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park and H.-G. Lee: Metall. Mater. Trans. B, 2013, vol.44, pp. 309-16.CrossRefGoogle Scholar
  7. 7.
    Y. Chung and A. W. Cramb: Metall. Mater. Trans. B, 2000, vol.31, pp. 957-71.CrossRefGoogle Scholar
  8. 8.
    L. Zhou, J. Li, W. Wang and I. Sohn: Metall. Mater. Trans. B, 2017, vol.48, pp. 1943-50.CrossRefGoogle Scholar
  9. 9.
    G. H. Kim and I. Sohn: Metall. Mater. Trans. B, 2016, vol.47, pp. 1773-84.CrossRefGoogle Scholar
  10. 10.
    J.-W. Cho, K. Blazek, M. Frazee, H. Yin, J. H. Park and S.-W. Moon: ISIJ Int., 2013, vol.53, pp. 62-70.CrossRefGoogle Scholar
  11. 11.
    K. Zhang, J. Liu and H. Cui: Metals, 2019, vol.9, pp. 398.CrossRefGoogle Scholar
  12. 12.
    K. Blazek, H. Yin, G. Skoczylas, M. McClymonds and M. Frazee: Iron Steel Tech., 2011, vol.8, pp. 232-40.Google Scholar
  13. 13.
    T. Wu, S.P. He, Y.T. Guo and Q. Wang: Characterization of Minerals, Metals, and Materials 2014, TMS, San Diego, CA, 2014, pp. 265-70.CrossRefGoogle Scholar
  14. 14.
    J. Yang, J. Zhang, O. Ostrovski, C. Zhang and D. Cai: Metall. Mater. Trans. B, 2019, vol.50, pp. 291-303.CrossRefGoogle Scholar
  15. 15.
    L. Zhou, H. Li, W. Wang, D. Xiao, L. Zhang and J. Yu: Metall. Mater. Trans. B, 2018, vol.49, pp. 2232-40.CrossRefGoogle Scholar
  16. 16.
    D. Xiao, W. Wang and B. Lu: Metall. Mater. Trans. B, 2015, vol.46, pp. 873-81.CrossRefGoogle Scholar
  17. 17.
    E. Gao, W. Wang and L. Zhang: J. Non-Cryst. Solids, 2017, vol.473, pp. 79-86.CrossRefGoogle Scholar
  18. 18.
    H. Wang, P. Tang, G. H. Wen and X. Yu: Ironmak. Steelmak., 2011, vol.38, pp. 369-73.CrossRefGoogle Scholar
  19. 19.
    G. H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol.45, pp. 86-95.CrossRefGoogle Scholar
  20. 20.
    E. Mohammad Sharifi, F. Karimzadeh and M. H. Enayati: J. Alloy. Compd., 2009, vol.482, pp. 110-13.CrossRefGoogle Scholar
  21. 21.
    L. Wang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang and D. Cai: Metall. Mater. Trans. B, 2017, vol.48, pp. 1055-63.CrossRefGoogle Scholar
  22. 22.
    M. Li, T. Utigard and M. Barati: Metall. Mater. Trans. B, 2015, vol.46, pp. 74-82.CrossRefGoogle Scholar
  23. 23.
    M. Asano and Y. Yasue: J. Nucl. Mater., 1986, vol.138, pp. 65-72.CrossRefGoogle Scholar
  24. 24.
    Z. T. Zhang, S. Sridhar and J. W. Cho: ISIJ Int., 2011, vol.51, pp. 80-87.CrossRefGoogle Scholar
  25. 25.
    D. J. Kim and J. H. Park: Metall. Mater. Trans. B, 2012, vol.43, pp. 875-86.CrossRefGoogle Scholar
  26. 26.
    P. V. Riboud and L. D. Lucas: Can. Metall. Quart., 1981, vol.20, pp. 199-208.CrossRefGoogle Scholar
  27. 27.
    H. Gaye, L. D. Lucas, M. Olette and P. V. Riboud: Can. Metall. Quart., 1984, vol.23, pp. 179-91.CrossRefGoogle Scholar
  28. 28.
    A. Sharan and A. W. Cramb: Metall. Mater. Trans. B, 1995, vol.26, pp. 87-94.CrossRefGoogle Scholar
  29. 29.
    F. D. Richardson: Can. Metall. Quart., 1982, vol.21, pp. 111-19.CrossRefGoogle Scholar
  30. 30.
    K. Nakashima and K. Mori: ISIJ Int., 1992, vol.32, pp. 11-18.CrossRefGoogle Scholar
  31. 31.
    R. Roscoe: Brit. J. Appl. Phys., 1952, vol.3, pp. 267.CrossRefGoogle Scholar
  32. 32.
    Q. Liu, G. Wen, J. Li, X. Fu, P. Tang and W. Li: Ironmak. Steelmak., 2014, vol.41, pp. 292-97.CrossRefGoogle Scholar
  33. 33.
    L. Zhang, S. Yang, K. Cai, J. Li, X. Wan and B. G. Thomas: Metall. Mater. Trans. B, 2007, vol.38, pp. 63-83.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jian Yang
    • 1
  • Hongji Cui
    • 1
  • Jianqiang Zhang
    • 1
    Email author
  • Oleg Ostrovski
    • 1
  • Chen Zhang
    • 2
  • Dexiang Cai
    • 2
  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Baosteel Group Corporation Research InstituteShanghaiChina

Personalised recommendations