Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 3055–3071 | Cite as

A Review of Methodology Development for Controlling Loss of Alloying Elements During the Electroslag Remelting Process

  • Sheng-Chao Duan
  • Xiao Shi
  • Fei Wang
  • Man-Cang Zhang
  • Ye Sun
  • Han-Jie GuoEmail author
  • Jing Guo
Article
  • 196 Downloads

Abstract

Electroslag remelting (ESR) is an advanced secondary refining technology for the production of clean, fully dense, and homogeneous castings of steels and alloys by removal of undesirable elements and nonmetallic inclusions. However, because of some potential reactions between reactive elements, i.e., Al and Ti, in liquid metal and oxygen as well as weak oxides, such as FeO and SiO2, in slag during the ESR process, it is impossible to hold those oxidative elements within specification or to maintain them uniformly from the bottom to top of the resultant ingot. According to a literature survey, recent fundamental research on the oxidation behaviors of Al and Ti in nickel-based alloy by ESR-type slag is scarce. Therefore, summarizing previous knowledge on the controlling loss reactive elements during ESR of Fe- and Ni-based alloys in view of thermodynamics and kinetics is in order to increase the basic understanding of the reaction mechanism between those elements and oxygen and weak oxides in the slag, which can guide the development of a new remelting technique that retards the oxidation of Al and Ti in Inconel 718 alloys during the ESR process. The presence of impurity elements, such as oxygen and sulfur, can also deteriorate the mechanical properties of metal products. Therefore, the inter-related literature about desulfurization during the ESR process is also reviewed in this article.

Notes

Acknowledgments

The authors are thankful for the support from the National Natural Science Foundation of China (Grant Nos. U1560203, 51704021, and 51274031), the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-16-079A1), and the Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing (USTB), China.

References

  1. 1.
    A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Technol., 2006, vol. 177, pp. 469–72.CrossRefGoogle Scholar
  2. 2.
    Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, and H.J. Li: Acta Metall. Sin., 2016, vol. 52, pp. 1259–66.Google Scholar
  3. 3.
    G.W. Meetham: J. Mater. Sci., 1991, vol. 26, pp. 853–60.CrossRefGoogle Scholar
  4. 4.
    X. Shi, S. Duan, W. Yang, H. Guo, and J. Guo: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1883–97.CrossRefGoogle Scholar
  5. 5.
    E.A. Loria: JOM, 1992, vol. 44, pp. 33–36.CrossRefGoogle Scholar
  6. 6.
    S. Chang: J. Alloys Compds., 2009, vol. 486, pp. 716–21.CrossRefGoogle Scholar
  7. 7.
    J.P. Collier, S.H. Wong, J.K. Tien, and J.C. Phillips: Metall. Trans. A, 1988, vol. 19A, pp. 1657–66.CrossRefGoogle Scholar
  8. 8.
    R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.CrossRefGoogle Scholar
  9. 9.
    B.I. Medovar and G.A. Boyko: Electroslag Remelting, Springer, New York, NY, 1991, pp. 155–64.Google Scholar
  10. 10.
    A. Mitchell, J. Szekely, and J.F. Elliott: Electroslag Refining, Iron and Steel Institute, London, 1973, pp. 1–11.Google Scholar
  11. 11.
    Y. Dong, Z. Jiang, Y. Cao, A. Yu, and D. Hou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1315–24.CrossRefGoogle Scholar
  12. 12.
    Q. Wang, R. Wang, Z. He, G. Li, B. Li, and H. Li: Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 1333–44.CrossRefGoogle Scholar
  13. 13.
    B.M. Patchett and D.R. Milner: Weld. J., 1972, vol. 51, pp. 491–505.Google Scholar
  14. 14.
    M. Etienne and A. Mitchell: Electric Furn. Proc., 1970, vol. 28, pp. 28–32.Google Scholar
  15. 15.
    D.K. Melgaard, R.L. Williamson, and J.J. Beaman: JOM, 1998, vol. 50, pp. 13–17.CrossRefGoogle Scholar
  16. 16.
    S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo, and J. Guo: Sci. Rep., 2018, vol. 8, p. 5232.CrossRefGoogle Scholar
  17. 17.
    J.W. Tommaney, P.S. Andolina, and R.C. Buri: U.S. Patent 4,953,177, 1990.Google Scholar
  18. 18.
    K.C. Mills and B.J. Keene: Int. Met. Rev., 1981, vol. 26, pp. 21–69.CrossRefGoogle Scholar
  19. 19.
    Z.H. Jiang, Y.W. Dong, X. Geng, and F.B. Liu: Electroslag Metallurgy, Science Press, Beijing, 2015.Google Scholar
  20. 20.
    Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010.Google Scholar
  21. 21.
    M. Sasabe and K.S. Goto: Metall. Trans., 1974, vol. 5, pp. 2225–33.CrossRefGoogle Scholar
  22. 22.
    C.X. Chen, Y. Wang, J. Fu, and E.P. Chen: Acta Metall. Sinica, 1981, vol. 17, pp. 50–57.Google Scholar
  23. 23.
    L.Z. Chang, X.F. Shi, and J.Q. Cong: Ironmak. Steelmak., 2014, vol. 41, pp. 182–86.CrossRefGoogle Scholar
  24. 24.
    X. Huang, B. Li, and Z. Liu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 709–22.CrossRefGoogle Scholar
  25. 25.
    X.C. Chen, C.B. Shi, F. Wang, H. Ren, and H.J. Guo: J. Mater. Metall., 2013, vol. 12, pp. 27–32.Google Scholar
  26. 26.
    X. Chen, C. Shi, H. Guo, F. Wang, H. Ren, and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1596–1607.CrossRefGoogle Scholar
  27. 27.
    L. Zhang, A. Allanore, C. Wang, J.A. Yurko, and J. Crapps: Materials Processing Fundamentals, Springer International Publishing, Cham, 2016, pp. 31–38.CrossRefGoogle Scholar
  28. 28.
    D.D. Wegman: “Investigation into Critical Parameters Which Determine the Oxygen Refining Capability of the Slag During Electroslag Remelting of Alloy 718,” Lehigh University, Bethlehem, PA, 1993.Google Scholar
  29. 29.
    D.D. Wegman: Proc. 6th Int. Symp. on Superalloys Sponsored by the High Temperature Alloys Committee of the Metallurgical Society of AIME, TMS-AIME, Warrendale, PA, 1988.Google Scholar
  30. 30.
    A. Mitchell, F. Reyes-Carmona, and E. Samuelsson: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 547–56.CrossRefGoogle Scholar
  31. 31.
    F. Reyes-Carmona and A. Mitchell: ISIJ Int., 1992, vol. 32, pp. 529–37.CrossRefGoogle Scholar
  32. 32.
    D. Hou, Z.H. Jiang, Y.W. Dong, and W.J. Zhou: J. Northeast. Univ., 2016, vol. 37, pp. 668–72.Google Scholar
  33. 33.
    F. Wang, X.C. Chen, and H.J. Guo: Adv. Mater. Res., 2012, vols. 476–478, pp. 218–26.Google Scholar
  34. 34.
    C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and X.L. Sun: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 378–89.CrossRefGoogle Scholar
  35. 35.
    C. Shi, X. Chen, H. Guo, Z. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.CrossRefGoogle Scholar
  36. 36.
    F. Wang, X.C. Chen, C.B. Shi, and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 258–64.Google Scholar
  37. 37.
    M. Sasabe and Y. Kinoshita: Tetsu-to-Hagané, 1979, vol. 65, pp. 1727–36.CrossRefGoogle Scholar
  38. 38.
    J.H. Wei and Z.Y. Liu: Acta Metall. Sinica, 1994, vol. 30, pp. 350–60.Google Scholar
  39. 39.
    Y. Liu, X. Wang, G. Li, Q. Wang, Z. Zhang, and B. Li: Vacuum, 2018, vol. 154, pp. 351–58.CrossRefGoogle Scholar
  40. 40.
    Y. Taniguchi, K. Morita, and N. Sano: ISIJ Int., 1997, vol. 37, pp. 956–61.CrossRefGoogle Scholar
  41. 41.
    M. Iwase, H. Akizuki, E. Ichise, and Y. Tanaka: Steel Res., 1986, vol. 57, pp. 436–43.CrossRefGoogle Scholar
  42. 42.
    X. Yang, C. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83, pp. 244–58.CrossRefGoogle Scholar
  43. 43.
    J.H. Park and D.J. Min: Steel Res. Int., 2004, vol. 75, pp. 807–11.CrossRefGoogle Scholar
  44. 44.
    X. Huang, B. Li, and Z. Liu: Int. J. Heat Mass Transfer, 2018, vol. 120, pp. 458–70.CrossRefGoogle Scholar
  45. 45.
    Q. Wang, G. Li, Y. Gao, Z. He, and B. Li: J. Appl. Electrochem., 2017, vol. 47, pp. 445–56.CrossRefGoogle Scholar
  46. 46.
    Q. Wang, F. Wang, G. Li, Y. Gao, and B. Li: Int. J. Heat Mass Transfer, 2017, vol. 113, pp. 1021–30.CrossRefGoogle Scholar
  47. 47.
    S. Li, G. Cheng, Z. Miao, L. Chen, C. Li, and X. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148–56.CrossRefGoogle Scholar
  48. 48.
    H. Wang, Y. Zhong, Q. Li, Y. Fang, W. Ren, Z. Lei, and Z. Ren: ISIJ Int., 2016, vol. 56, pp. 255–63.CrossRefGoogle Scholar
  49. 49.
    G. Pateisky, H. Biele, and H.J. Fleischer: J. Vac. Sci. Technol., 1972, vol. 9, pp. 1318–21.CrossRefGoogle Scholar
  50. 50.
    Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1465–74.CrossRefGoogle Scholar
  51. 51.
    A.I. Zaitsev, N.V. Korolyov, and B.M. Mogutnov: J. Chem. Thermodyn., 1990, vol. 22, pp. 513–30.CrossRefGoogle Scholar
  52. 52.
    A.I. Zaitsev, N.V. Korolyov, and B.M. Mogutnov: J. Chem. Thermodyn., 1990, vol. 22, pp. 531–43.CrossRefGoogle Scholar
  53. 53.
    C. Shi, J. Li, J. Cho, F. Jiang, and I. Jung: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2110–20.CrossRefGoogle Scholar
  54. 54.
    D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao, and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1400–09.CrossRefGoogle Scholar
  55. 55.
    S.C. Duan, H.J. Guo, X. Shi, J. Guo, B. Li, S.W. Han, and W.S. Yang: Chin. J. Eng., 2018, vol. 40, pp. 53–64.Google Scholar
  56. 56.
    M.E. Fraser and A. Mitchell: Ironmak. Steelmak., 1976, vol. 3, pp. 279–87.Google Scholar
  57. 57.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149-58.CrossRefGoogle Scholar
  58. 58.
    J.H. Wei and A. Mitchell: Acta Metall. Sinica, 1984, vol. 20, pp. 406–13.Google Scholar
  59. 59.
    D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao, and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1410–19.CrossRefGoogle Scholar
  60. 60.
    J.G. Yang and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2147–56.CrossRefGoogle Scholar
  61. 61.
    D. Hou, Z. Jiang, Y. Dong, Y. Li, W. Gong, and F. Liu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1885–97.CrossRefGoogle Scholar
  62. 62.
    D. Hou, Z. Jiang, Y. Dong, Y. Cao, H. Cao, and W. Gong: Ironmak. Steelmak., 2016, vol. 43, pp. 517–25.CrossRefGoogle Scholar
  63. 63.
    A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek: Steel Res. Int., 2018, vol. 89, p. 1700100.CrossRefGoogle Scholar
  64. 64.
    J.H. Wei and A. Mitchell: Acta Metall. Sinica, 1984, vol. 20, pp. 387–405.Google Scholar
  65. 65.
    C.X. Chen, R.F. Gao, and W.X. Zhao: Acta Metall. Sinica, 1984, vol. 20, pp. 137–45.Google Scholar
  66. 66.
    D. Hou, F. Liu, T. Qu, Z. Jiang, D. Wang, and Y. Dong: ISIJ Int., 2018, vol. 58, pp. 876–85.CrossRefGoogle Scholar
  67. 67.
    C.L. White and D.F. Stein: Metall. Trans. A, 1978, vol. 9A, pp. 13–22.CrossRefGoogle Scholar
  68. 68.
    W.R. Sun, S.R. Guo, D.Z. Lu, and Z.O. Hu: Mater. Lett., 1997, vol. 31, pp. 195–200.CrossRefGoogle Scholar
  69. 69.
    W. Wallace, R.T. Holt, and T. Terada: Metallography, 1973, vol. 6, pp. 511–26.CrossRefGoogle Scholar
  70. 70.
    E.P. Whelan and M.S. Grzedzielski: Met. Technol., 1974, vol. 1, pp. 186–90.CrossRefGoogle Scholar
  71. 71.
    Q. Li, H. Zhang, M. Gao, J. Li, T. Tao, and H. Zhang: Int. J. Miner., Metall. Mater., 2018, vol. 25, pp. 696–703.Google Scholar
  72. 72.
    J. Li, H. Zhang, M. Gao, Q. Li, J. Zhang, B. Yang, and H. Zhang: Rare Met., 2018,  https://doi.org/10.1007/s12598-018-1103-1.
  73. 73.
    J. Morscheiser, L. Thönnessen, B. Friedrich, and M. Recycling: Sulphur Control in Nickel-Based Superalloy Production, 6th Eur. Metallurgical Conf. EMC 2011, Duesseldorf, 2011.Google Scholar
  74. 74.
    M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd ed., ASM International, Materials Park, OH, 2002.Google Scholar
  75. 75.
    J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan, and Z.Q. Hu: Acta Metall. Sinica, 2002, vol. 38, pp. 303–08.Google Scholar
  76. 76.
    J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan, and Z.Q. Hu: Rare Met. Mater. Eng., 2003, vol. 32, pp. 63–66.Google Scholar
  77. 77.
    A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563–74.CrossRefGoogle Scholar
  78. 78.
    A.K. Vaish, G.V.R. Iyer, P.K. De, B.A. Lakra, A.K. Chakrabarti, and P. Ramachandrarao: J. Metall. Mater. Sci., 2000, vol. 42, pp. 11–29.Google Scholar
  79. 79.
    A. Mitchell: J. Vac. Sci. Technol., 1970, vol. 6, pp. S63–S73.CrossRefGoogle Scholar
  80. 80.
    C. Guo, S. Shang, Z. Du, P.D. Jablonski, M.C. Gao, and Z. Liu: Calphad, 2015, vol. 48, pp. 113–22.CrossRefGoogle Scholar
  81. 81.
    S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh, and M. Hino: ISIJ Int., 2004, vol. 44, pp. 1810–16.CrossRefGoogle Scholar
  82. 82.
    A. Bronson and G.R.S. Pierre: Metall. Trans. B, 1979, vol. 10B, pp. 375–80.CrossRefGoogle Scholar
  83. 83.
    M. Ohta, T. Kubo, and K. Morita: Tetsu-to-Hagané, 2003, vol. 89, pp. 742–49.CrossRefGoogle Scholar
  84. 84.
    C. Choi, S. Jo, S. Kim, K. Lee, and J. Kim: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 115–20.CrossRefGoogle Scholar
  85. 85.
    S.R. Simeonov, I.N. Ivanchev, and A.V. Hainadjiev: ISIJ Int., 1991, vol. 31, pp. 1396–99.CrossRefGoogle Scholar
  86. 86.
    H.B. Bell: Can. Metall. Q., 1981, vol. 20, pp. 169–79.CrossRefGoogle Scholar
  87. 87.
    G. Zhang, K. Chou, and U. Pal: ISIJ Int., 2013, vol. 53, pp. 761–67.CrossRefGoogle Scholar
  88. 88.
    N.Q. Minh and T.B. King: Metall. Trans. B, 1979, vol. 10B, pp. 623–29.CrossRefGoogle Scholar
  89. 89.
    M. Eissa and A. EI Mohammadi: Steel Res. Int., 1998, vol. 69, pp. 413–17.CrossRefGoogle Scholar
  90. 90.
    J. Morscheiser, L. Thönessen, B. Gehrmann, and B. Friedrich: The Influence of the Slag Composition on the Desulphurization of Nickel-Based Superalloys, 2012,  https://doi.org/10.13140/RG.2.1.4020.8247.
  91. 91.
    Q. Wang, G. Li, Z. He, and B. Li: Appl. Therm. Eng., 2017, vol. 114, pp. 874–86.CrossRefGoogle Scholar
  92. 92.
    X. Li, X. Geng, Z.H. Jiang, H.B. Li, F.H. XU, and L.X. Wang: Iron Steel, 2015, vol. 50, pp. 41–46.Google Scholar
  93. 93.
    X.C. Chen, F. Wang, C.B. Shi, H. Ren, and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 252–57.Google Scholar
  94. 94.
    Q. Wang, Y. Liu, Z. He, G. Li, and B. Li: ISIJ Int., 2017, vol. 57, pp. 329–36.CrossRefGoogle Scholar
  95. 95.
    Q. Wang, Y. Liu, F. Wang, G. Li, B. Li, and W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2649–63.CrossRefGoogle Scholar
  96. 96.
    Q. Wang, Z. He, G. Li, B. Li, C. Zhu, and P. Chen: Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 943–51.CrossRefGoogle Scholar
  97. 97.
    Q. Wang, Y. Liu, G. Li, Y. Gao, Z. He, and B. Li: Appl. Therm. Eng., 2018, vol. 129, pp. 378–88.CrossRefGoogle Scholar
  98. 98.
    S.C. Duan, X. Shi, F. Wang, M.C. Zhang, B. Li, W.S. Yang, H.J. Guo, and J. Guo: J. Mater. Res. Technol., 2019, vol. 8, pp. 2508–16.CrossRefGoogle Scholar
  99. 99.
    W. Lou and M. Zhu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1706–22.CrossRefGoogle Scholar
  100. 100.
    R.J. Pomfret and P. Grieveson: Can. Metall. Q., 1983, vol. 22, pp. 287–99.CrossRefGoogle Scholar
  101. 101.
    C.Z. Wang: Research Methods in Metallurgical Physical Chemistry, Metallurgical Industry Press, Beijing, 2013.Google Scholar
  102. 102.
    S. Duan, C. Li, H. Guo, J. Guo, S. Han, and W. Yang: Int. J. Miner., Metall. Mater., 2018, vol. 25, pp. 399–404.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingP.R. China
  2. 2.Beijing Key Laboratory of Special Melting and Preparation of High-End Metal MaterialsUniversity of Science and Technology Beijing (USTB)BeijingP.R. China
  3. 3.Tianjin Cisri-Harder Materials & Technology Co. LTDCentral Iron and Steel Research Institute (CISRI)TianjinP.R. China

Personalised recommendations