Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2942–2958 | Cite as

Oxide Solubility Minimum in Liquid Fe-M-O Alloy

  • Youn-Bae KangEmail author


The origin of the solubility minimum of oxide (\( {M}_x\text{O}_y\)) in liquid Fe-M-O alloy was investigated, and the minimum was predicted based on thermodynamic calculations. Due to the characteristic property of activities of M and O in the liquid, a maximum exists in the product between the two activities if the affinity of M to O is significantly high, as most deoxidizing elements are. A critical activity product is defined, which is an indicator of the solubility minimum of the \( {M}_x\text{O}_y\) in the liquid Fe-M-O alloy according to the following relationship: \({{\text{max}}}(a_M^x \times a_{\underline{{{\text{O}}}}}^y) = {K_{M_x{{\text{O}}}_y}\times a_{M_x{{\text{O}}}_y}}\), where the \(a_{M_x{{\text{O}}}_y}\) is unity if the alloy is in equilibrium with the pure \(M_x{{\text{O}}}_y\). The origin of the solubility minimum was explained using the change of the activity product by composition. Available CALPHAD assessments for several binary Fe-M liquid alloys and Wagner’s solvation shell model were combined to calculate the activity product in the Fe-M-O alloy, which can be used to predict the solubility minimum of \( {M}_x\text{O}_y\). A favorable agreement was obtained when \(M = {\text{Al}}\), B, Cr, Mn, Nb, Si, Ta, Ti, V, and Zr. The Gibbs energy of dissolution of O in pure liquid M (\(\Delta g^\circ _{\underline{{{\text{O}}}}(M)}\)) and the Gibbs energy of the formation of \( {M}_x\text{O}_y\) per mole of atoms (\(\Delta g^\circ _{M_x{{\text{O}}}_y}/(x+y)\)) play important roles in determining the solubility minimum, as long as an interaction between Fe and M is less significant than the interaction between metal (Fe and M) and O. Predictions of the solubility minima of CaO and MgO were not satisfactory, requiring further improvement of the present analysis.



The present author is grateful for the hospitality of Prof. P. Chartrand, École Polytechnique de Montréal, Canada, during his sabbatical stay. Constructive comments from Prof. Emeritus A.D. Pelton, École Polytechnique de Montréal, Canada, are also appreciated.


  1. 1.
    C. Wagner: Thermodynamics of Alloys, Addison-Wesley Pub. Co., Reading, MA, pp. 51–53, 1951.Google Scholar
  2. 2.
    G. Sigworth and J. F. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.Google Scholar
  3. 3.
    Japan Society for the Promotion of Science: in Steelmaking Data Sourcebook, Gordon & Breach Science, New York, NY, 1988.Google Scholar
  4. 4.
    C. Lupis: in Chemical Thermodynamics of Materials, Simon & Schuster (Asia) Pte Ltd, Singapore, 1993.Google Scholar
  5. 5.
    J. D’Entremont, D. Guernsey, and J. Chipman: Trans. Mec. Soc. AIME, 1963, vol. 227, pp. 14–17.Google Scholar
  6. 6.
    V. Shevtsov: Russ. Metall., 1981, vol. 1, pp. 52–57.Google Scholar
  7. 7.
    G. R. S. Pierre and R. Blackburn: Trans. Mec. Soc. AIME, 1968, vol. 242, pp. 2–4.Google Scholar
  8. 8.
    G. R. S. Pierre: Metall. Trans. B, 1977, vol. 8, pp. 215–217.Google Scholar
  9. 9.
    P.-W. Han, P.-X. Chen, and S.-J. Chu: High Temp. Mater. Proc., 2016, vol. 35, pp. 347–351.Google Scholar
  10. 10.
    M. Hone, S. Houot, and M. Rigaud: Can. Metall. Quart., 1974, vol. 13, pp. 619–623.Google Scholar
  11. 11.
    C.-G. Kuo: J. Alloys Comp., 2010, vol. 494, pp. 72–77.Google Scholar
  12. 12.
    G. R. Holcomb and G. R. S. Pierre: Metall. Trans. B, 1992, vol. 23, pp. 789–790.Google Scholar
  13. 13.
    S. S. Shibaev, P. V. Krasovskii, and K. V. Grigorovitch: ISIJ Int., 2005, vol. 45, pp. 1243–1247.Google Scholar
  14. 14.
    H. Itoh, M. Hino, and S. Ban-Ya: Tetsu-to-Hagane, 1997, vol. 83, pp. 773–778.Google Scholar
  15. 15.
    D. Bouchard and C. W. Bale: J. Phase Equil., 1995, vol. 16, pp. 16–23.Google Scholar
  16. 16.
    I.-H. Jung, S. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493–507.Google Scholar
  17. 17.
    C. W. Bale and A. D.Pelton: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1997–2002.Google Scholar
  18. 18.
    A. D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28, pp. 869–876.Google Scholar
  19. 19.
    M.-K. Paek, J.-J. Pak, and Y.-B. Kang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2224–2233.Google Scholar
  20. 20.
    A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651–659.Google Scholar
  21. 21.
    M.-K. Paek, J.-M. Jang, Y.-B. Kang, and J.-J. Pak: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1826–1836.Google Scholar
  22. 22.
    A. D. Pelton, and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1355–1360.Google Scholar
  23. 23.
    G. Eriksson and A. D. Pelton: Metall. Trans. B, 1993, vol. 24, pp. 807–816.Google Scholar
  24. 24.
    D. Janke and W. Fischer: Arch. Eisenhüttenwes, 1976, vol. 47, pp. 195–198.Google Scholar
  25. 25.
    M.-K. Paek, K.-H. Do, Y.-B. Kang, I.-H. Jung, and J.-J. Pak: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2837–2847.Google Scholar
  26. 26.
    C. Wagner: Acta Metall., 1973, vol. 21, pp. 1297–1303.Google Scholar
  27. 27.
    T. Chiang and Y. A. Chang: Metall. Trans. B, 1976, vol. 7, pp. 453–467.Google Scholar
  28. 28.
    R. Schmid, J.-C. Lin, and Y. A. Chang: Zeit. fuer Metall., 1984, vol. 75, pp. 730–737.Google Scholar
  29. 29.
    L. Pauling: The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1970.Google Scholar
  30. 30.
    S. Otsuka and Z. Kozuka: Metall. Trans. B, 1981, vol. 12, pp. 455–459.Google Scholar
  31. 31.
    Y. A. Chang, K. Fitzner, and M.-X. Zhang: Prog. Mater. Sci., 1988, vol. 32, pp. 97–259.Google Scholar
  32. 32.
    R. Hultgren, P. Desai, D. Hawkins, M. Gleiser, and K. Kelley: Selected Values of Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973.Google Scholar
  33. 33.
    B. Sundman, I. Ohnuma, N. Dupin, U. R. Kattner, and S. G. Fries: Acta Mater., 2009, vol. 57, pp. 2896–2908.Google Scholar
  34. 34.
    B. Hallemans, P. Wollants, and J. R. Roos: J. Phase Equil., 1995, vol. 16, pp. 137–149.Google Scholar
  35. 35.
    M. Selleby and B. Sundman: Calphad, 1996, vol. 20, pp. 381–392.Google Scholar
  36. 36.
    J.-O. Andersson and B. Sundman: Calphad, 1987, vol. 11, pp. 83–92.Google Scholar
  37. 37.
    J. Tibballs: in System Fe-Mg, European Communities, 1998, pp. 195–196Google Scholar
  38. 38.
    W. Huang: Calphad, 1989, vol. 13, pp. 243–252.Google Scholar
  39. 39.
    S. Liu, B. Hallstedt, D. Music, and Y. Du: Calphad, 2012, vol. 38, pp. 43–58.Google Scholar
  40. 40.
    J. Lacaze and B. Sundman: Metall. Trans. A, 1991, vol. 22, pp. 2211–2223.Google Scholar
  41. 41.
    S. Srikanth and A. Petric: J. Alloys Comp., 1994, vol. 203, pp. 281–288.Google Scholar
  42. 42.
    J. De Keyzer, G. Cacciamani, N. Dupin, and P. Wollants: Calphad, 2009, vol. 33, pp. 109–123.Google Scholar
  43. 43.
    K. Hari Kumar, and V. Raghavan: Calphad, 1991, vol. 15, pp. 307–314.Google Scholar
  44. 44.
    M. Jiang, K. Oikawa, T. Ikeshoji, L. Wulff, K. Ishida, J. Phase Equil. 22, 406–417 (2001)Google Scholar
  45. 45.
    C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.Google Scholar
  46. 46.
    M. Chase, ed.: in JANAF Thermochemical Tables, AIP, Woodbury, NY, 1985.Google Scholar
  47. 47.
    T. Kimura and H. Suito: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 33–42.Google Scholar
  48. 48.
    S. Dimitrov, H. Venz, K. Koch, and D. Janke: Steel Res., 1995, vol. 66, pp. 39–43.Google Scholar
  49. 49.
    J.-D. Seo and S.-H. Kim: Steel Res., 2000, vol. 71, pp. 101–106.Google Scholar
  50. 50.
    K. Takahashi and M. Hino: High Temp. Mater. Proc., 2000, vol. 19, pp. 1–10.Google Scholar
  51. 51.
    L. Gu and Z. Tang: Acta Metall. Sinica, 1985, vol. 21, pp. A167–A174.Google Scholar
  52. 52.
    W. Fischer and D. Janke: Arch. Eisenhüttenwes, 1971, vol. 42, pp. 695–698.Google Scholar
  53. 53.
    W.-Y. Cha, T. Nagasaka, T. Miki, Y. Sasaki, and M. Hino: ISIJ Int., 2006, vol. 46, pp. 996–1005.Google Scholar
  54. 54.
    D. Kay and A. Kontopoulos, in Chemical Metallurgy of Iron and Steel: Proc. Int. Symp on Metallurgical Chemistry—Application in Ferrous Metallurgy, Iron and Steel Institute, London, 1971, pp. 178–183Google Scholar
  55. 55.
    R. Inoue, T. Ariyama, and H. Suito: ISIJ Int., 2008, vol. 48, pp. 1175–1181.Google Scholar
  56. 56.
    A. Ghosh and G. Murthy: Trans. ISIJ, 1986, vol. 26, pp. 629–637.Google Scholar
  57. 57.
    W. Liang: Zeit. fuer Metall., 1982, vol. 73, pp. 369–375.Google Scholar
  58. 58.
    Y. A. Chang and D. C. Hu: Metall. Trans. B, 1979, vol. 10, pp. 43–48.Google Scholar
  59. 59.
    K. Fitzner: Thermochimica Acta, 1982, vol. 52, pp. 103–111.Google Scholar
  60. 60.
    Y.-B. Kang and I.-H. Jung: J. Phys. Chem. Solids, 2016, vol. 98, pp. 237–246.Google Scholar
  61. 61.
    K. T. Jacob: Metall. Trans. B, 1981, vol. 12, pp. 675–678.Google Scholar
  62. 62.
    T. Narushima, K. Matsuzawa, Y. Mukai, and Y. Iguchi: Mater. Trans. JIM, 1994, vol. 35, pp. 522–528.Google Scholar
  63. 63.
    W. Huang: Calphad, 2004, vol. 28, pp. 153–157.Google Scholar
  64. 64.
    K. Jacob and C. Alcock: Acta Metall., 1972, vol. 20, pp. 221–232.Google Scholar
  65. 65.
    K. Fitzner and K. Jacob: J. Less Common Met., 1977, vol. 52, pp. 279–291.Google Scholar
  66. 66.
    S.-M. Liang and R. Schmid-Fetzer: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 4768–4785.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.CRCT, Department of Chemical EngineeringÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations