Metallurgical and Materials Transactions B

, Volume 50, Issue 6, pp 2930–2941 | Cite as

Insight into the Relationship Between Viscosity and Structure of CaO-SiO2-MgO-Al2O3 Molten Slags

  • Ziwei Chen
  • Hao Wang
  • Yongqi SunEmail author
  • Lili Liu
  • Xidong WangEmail author


This article elucidates the quantitative relationship between viscosity and structure in a basic slag system of CaO-SiO2-MgO-Al2O3 and focuses on the role of Al2O3. Slag viscosity was measured by the rotating cylinder method, and structural information was obtained using Fourier transformation infrared, Raman and magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The results show that, as the Al2O3 content increased, slag viscosity increased initially and decreased afterwards, directly indicating that Al2O3 had an amphoteric effect on slag viscosity. The Raman spectra verified that with increasing Al2O3 content, the concentrations of Q0(Si) and Q2(Si) decreased first and then increased, while that of Q1(Si) kept increasing and that of Q3(Si) increased first and then decreased. The 27Al MAS-NMR spectra proved that the mole ratios of AlO5 and AlO6 to AlO4 kept increasing with the increase of Al2O3 content, and, overall, Al2O3 changed from a network former to a network modifier. The relationship between the viscosity and structure of the molten slags was further analyzed quantitatively based on the modified (NBO/T), denoted as (NBO/T)′, and we found a fine linear correlation between the logarithm of viscosity and (NBO/T)′. Moreover, the variations of thermodynamic properties of this system also indirectly supported the present experimental results.



Support from the National Key Research and Development Project of China (2018YFC1901505) is acknowledged. This work was also supported by the National Natural Science Foundation of China (51672006 and 51472006) and the Ministry of Land and Resources Public Welfare Industry Research Project (201511062-02).


  1. 1.
    M. Yellishetty, and G.M. Mudd: J. Clean Prod., 2014, vol. 84, pp. 400-10.CrossRefGoogle Scholar
  2. 2.
    Z. Yan, X. Lv, J. Zhang, Y. Qin, and C. Bai: Can. Metall. Q., 2016, vol. 55, pp. 186-94.CrossRefGoogle Scholar
  3. 3.
    M. Thangavelu, and A.K. Bhattacharya: J. Indian Soc. Remote Sens., 2011, vol. 39, pp. 473-83.CrossRefGoogle Scholar
  4. 4.
    D. Liu, H. Liu, J. Zhang, Z. Liu, X. Xue, G. Wang, and Q. Kang: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 991-98.CrossRefGoogle Scholar
  5. 5.
    A.S. Mehta, and V. Sahajwalla: Scand. J. Metall., 2010, vol. 29, pp. 17-29.CrossRefGoogle Scholar
  6. 6.
    W.H. Kim, I. Sohn, and D.J. Min: Steel Res. Int., 2010, vol. 81, pp. 735-41.CrossRefGoogle Scholar
  7. 7.
    N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34, pp. 509-16.CrossRefGoogle Scholar
  8. 8.
    Y. Gao, S. Wang, C. Hong, X. Ma, and Y. Fu: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 353-62.CrossRefGoogle Scholar
  9. 9.
    J.F. Stebbins, E.V. Dubinsky, K. Kanehashi, and K.E. Kelsey: Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 910-25.CrossRefGoogle Scholar
  10. 10.
    B. Hehlen, and D.R. Neuville: J. Phys. Chem. B, 2015, vol. 119, pp. 4093-98.CrossRefGoogle Scholar
  11. 11.
    C.L. Losq, D.R. Neuville, P. Florian, G.S. Henderson, and D. Massiot: Geochim. Cosmochim. Acta, 2014, vol. 126, pp. 495-517.CrossRefGoogle Scholar
  12. 12.
    Z. Wang, Y. Sun, S. Sridhar, Z. Mei, G. Min, and Z. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 537-41.CrossRefGoogle Scholar
  13. 13.
    Y. Lu, R. Shan, X. Wang, Q. Liu, L. Dong, J. Yang, and J. Liu: Steel Res. Int., 2016, vol. 87, pp. 241-49.CrossRefGoogle Scholar
  14. 14.
    G.H. Kim, and I. Sohn: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1530-37.CrossRefGoogle Scholar
  15. 15.
    F. Cong, M. Chu, J. Tang, Y. Tang, and Z. Liu: Steel Res. Int., 2016, vol. 87, pp. 1274-83.CrossRefGoogle Scholar
  16. 16.
    H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, J.M. Dong, and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44, pp. 5-12.CrossRefGoogle Scholar
  17. 17.
    Y. Sun, H. Wang, and Z. Zhang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 677-87.CrossRefGoogle Scholar
  18. 18.
    J.H. Park, J.M. Dong, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35, pp. 269-75.CrossRefGoogle Scholar
  19. 19.
    C. Sun, X. Liu, J. Li, X. Yin, S. Song, and Q. Wang: ISIJ Int., 2017, vol. 57, pp. 578-82.Google Scholar
  20. 20.
    J.H. Park, H. Kim, and J.M. Dong: Metall. Mater. Trans. B, 2008, vol. 39, pp. 150-53.CrossRefGoogle Scholar
  21. 21.
    A. Aronne, S. Esposito, and P. Pernice: Mater. Chem. Phys., 1997, vol. 51, pp. 163–68.CrossRefGoogle Scholar
  22. 22.
    F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and P. Layrolle: Key Eng. Mater., 2008, vol. 361-363, pp. 825-28.Google Scholar
  23. 23.
    H. Li, H. Li, and W. Li: Coal Sci. Technol., 2006, vol. 34, pp. 24–26.Google Scholar
  24. 24.
    B.N. Roy: J. Am. Ceram. Soc., 2010, vol. 73, pp. 846-55.CrossRefGoogle Scholar
  25. 25.
    N.J. Clayden, S. Esposito, A. Aronne, and P. Pernice: J. Non-Cryst. Solids, 1999, vol. 258, pp. 11-19.CrossRefGoogle Scholar
  26. 26.
    Y. Sun, and Z. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1549-54.CrossRefGoogle Scholar
  27. 27.
    P. Lu, W. Xia, H. Jiang, and H. Zhao: Bull. Chin. Ceram. Soc., 2015, vol. 34, pp. 878-87.Google Scholar
  28. 28.
    Y. Jiang, X. Lin, K. Ideta, H. Takebe, M. Jin, S.H. Yoon, and I. Mochida: J. Ind. Eng. Chem., 2014, vol. 20, pp. 1338-45.CrossRefGoogle Scholar
  29. 29.
    S. Markovic, V. Dondur, and R. Dimitrijevic: J. Mol. Struct., 2003, vol. 654, pp. 223-34.CrossRefGoogle Scholar
  30. 30.
    I. Daniel, P. Gillet, B.T. Poe, and P.F. Mcmillan: Phys. Chem. Miner., 1995, vol. 22, pp. 74-86.CrossRefGoogle Scholar
  31. 31.
    J. Stebbins: Chem. Geol., 2013, vol. 346, pp. 34-46.CrossRefGoogle Scholar
  32. 32.
    T. Takaishi, M. Kato, and K. Itabashi: J. Phys. Chem., 1994, vol. 98, pp. 5742–43.CrossRefGoogle Scholar
  33. 33.
    G. Jiang, J. You, Y. Wu, H. Hou, and H. Chen: Geol.-Geochem., 2003, vol. 31, pp. 80–86.Google Scholar
  34. 34.
    W. Wang, J. Tan, D. Zhang, Q. Wang, J. Tian, and S. Tian: J. Earth Sci., 2004, vol. 29, pp. 39–44.Google Scholar
  35. 35.
    Y. Wu, G. Jiang, J. You, H. Hou, and H. Chen: Acta Phys. Sin., 2005, vol. 54, pp. 961-66.Google Scholar
  36. 36.
    X. Tang, M. Guo, X. Wang, Z. Zhang, and M Zhang: J. Univ. Sci. Technol. Beijing, 2010, vol. 32, pp. 1542-46.Google Scholar
  37. 37.
    T. Wu, S. He, Y. Liang, and Q. Wang: J. Non-Cryst. Solids, 2015, vol. 411, pp. 145-51.CrossRefGoogle Scholar
  38. 38.
    V. L. Stolyarova: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1373-77.CrossRefGoogle Scholar
  39. 39.
    Q. Shu, P. Li, X. Zhang, and K. Chou: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1-6.Google Scholar
  40. 40.
    A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38, pp. 911-15.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Energy and Resources Engineering, College of EngineeringPeking UniversityBeijingP.R. China
  2. 2.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations