Metallurgical and Materials Transactions B

, Volume 50, Issue 4, pp 1704–1717 | Cite as

Observational Study of Clogging Specimens from the Tundish Well Showing Origin and Growth of a Clog in an Al-Killed Ti-Alloyed Steel Cast

  • Bernadeta Karnasiewicz
  • Enno ZinngrebeEmail author


Post-mortem tundish skull samples of Ti-alloyed, Al-killed IF steel have been studied regarding the formation of clogging. By using modern characterization equipment and applied methods, we performed a detailed characterization of microstructures found in the tundish well. Aside from the primary metallographic examination, newly developed methods of particle size distribution analysis based on population density functions (PDF) and newly developed electron microscope EDS template mapping have been applied, allowing differentiation of complex particles according to phases and interphase contact relationships. Furthermore, detailed EDS analyses of individual inclusions with complex substructure regarding minor and trace elements within the alumina networks have been performed. These composite data on carefully selected clog microstructures allowed us to observe the presence of layering microstructures throughout the clog: “Coarse” layers (abundant microbubbles and internally complex alumina aggregates) and “Fine” layers (no microbubbles and complex alumina aggregates). Two populations of particles: Population I (2 to 5 µm) and a Population II (5 to 20 µm) build up the layers, both having lognormal PDF, in contrast to power-law PDF of secondary metallurgy inclusions. Coarse layers are further distinguished by selective concentrations of spinel with lognormal PDF as well as the occurrence of complex alumina particles with metal sub-inclusions often with elevated Cr, V, and Si content. Based on these observations, we derive a model for the origin and accumulation of the inclusions making up the clog, which suggests that the NMI of the two dominant populations do not come from the bulk steel, although secondary metallurgy-derived inclusions can be traced in the clog. Overall, microstructures show that the clog behaves as a coherent solid, and is able to displace and fracture.



The authors thank Tata Steel for the permission to publish. Many colleagues contributed to the work and observations presented here. We want to thank C van Hoek for help with EDS analyses, F van der Does and E Dogan for material preparation and W Tiekink, J Small, and SR van der Laan for helpful discussions. This work is a part of the graduation thesis of one of the authors (B. K.) performed at Rzeszow University, Poland, in 2017 (Supervisor: W. Bochnowski).


  1. 1.
    G. C. Duderstadt, R. K. Iyengar, J. M. Matesa: J. Met., 1968, 20:89-94Google Scholar
  2. 2.
    S. N. Singh: Metall. Trans., 1974, 5:2165-2178CrossRefGoogle Scholar
  3. 3.
    K. Rackers and B.G. Thomas: in 78th Steelmaking Conf. Proc., 1995, vol. 78, pp. 723–34.Google Scholar
  4. 4.
    K. Sasai, Y. Mizukami: ISIJ Int., 1994, 34:802-809CrossRefGoogle Scholar
  5. 5.
    K. Sasai, Y. Mizukami: ISIJ Int., 2001, 41:1331-1339CrossRefGoogle Scholar
  6. 6.
    H. Tozawa, Y. Kato, K. Sorimachi, T. Nakanishi: ISIJ Int, 1999, 39:426-434CrossRefGoogle Scholar
  7. 7.
    N. Kojola, S. Ekerot, M. Andersson, P. G. Joensson: Ironmaking Steelmaking, 2011, 38:1-11CrossRefGoogle Scholar
  8. 8.
    WC Doo, DY Kim, SC Kang, KW Yi: ISIJ Int., 2007, 47:1070-1072CrossRefGoogle Scholar
  9. 9.
    H. Lei, JC He: J. Non-Cryst. Solids, 2006, 352:3772-3780CrossRefGoogle Scholar
  10. 10.
    O. Araromi, B.G. Thomas, E. Conzemius: Mat. Sci. Tech. Conf., AIST, 2009, pp. 1–10Google Scholar
  11. 11.
    S. Wu, Y. Wang, L. Zhang, and J. Zhang: AISTech 2009, Proceedings of the Iron & Steel Technology Conference, pp. 543–58Google Scholar
  12. 12.
    M. Long, X. Zuo, L. Zhang, D. Chen: ISIJ Int., 2010, 50:712-720CrossRefGoogle Scholar
  13. 13.
    H. Barati, M. Wu, A. Kharicha, and A. Ludwig: Powder Technol., 2018, pp. 29181–98Google Scholar
  14. 14.
    M Andersson, J Appelberg, A Tilliander, K Nakajima, H Shibata, S Kitamura, L Jonsson, P Joensson: ISIJ Int., 2006, 46:814-823CrossRefGoogle Scholar
  15. 15.
    W Fix, H Jacobi, K Wuennenberg: Steel Res. (1993), 64:71-76CrossRefGoogle Scholar
  16. 16.
    Y Gao, K Sorimachi: ISIJ Int., 1993, 33:291-297CrossRefGoogle Scholar
  17. 17.
    T Matsui, T Ikemoto, K Sawano, I Sawada: Taikabutsu Overseas, 1997, 18 3-9Google Scholar
  18. 18.
    S Basu, S Choudhary, N Girase: ISIJ Int., 2004, 44:1653-1660CrossRefGoogle Scholar
  19. 19.
    JH Lee, MH Kang, SK Kim, YB Kang: ISIJ Int. (2018), 58:1257-1266CrossRefGoogle Scholar
  20. 20.
    F Tehovnik, J Burja, B Arh, M Knap: Metalurgija (2015) 54:371-374Google Scholar
  21. 21.
    B Harcsik, P Tardy, G Karoly: Rev. Metall., (2012) 109:177-186CrossRefGoogle Scholar
  22. 22.
    M Burty, L Peeters, E Perrin, S Muenzer, P Colucci, D Salvadori, F. Schadow, JM Valcarcel, J Claes: Rev. Metall., 2005, 102:745-751CrossRefGoogle Scholar
  23. 23.
    E. Zinngrebe, J. Small, S.R. van der Laan, and A. Westendorp: Unpubl. Res. Submitted to Met. Mat. Ser. B, 2018 (under review)Google Scholar
  24. 24.
    B Karnasiewicz: Unpubl. Masters Thesis, Univ of Rzeszow, 2017.Google Scholar
  25. 25.
    MD Higgins: American Mineralogist (2000), 85:1105-1116CrossRefGoogle Scholar
  26. 26.
    MD Higgins: American Mineralogist (2002), 87:171-175CrossRefGoogle Scholar
  27. 27.
    MA van Ende, M Guo, E Zinngrebe, B Blanpain, IH Jung: ISIJ Int. (2013), 53:1974-1982CrossRefGoogle Scholar
  28. 28.
    E Zinngrebe, C Van Hoek, H Visser,A Westendorp & IH Jung: ISIJ Int. (2012), 52:52-61CrossRefGoogle Scholar
  29. 29.
    L. Zhang, W. Pluschkell, and B.G. Thomas: 85th Steelmaking Conf., 2002, vol. 85, pp. 463–76Google Scholar
  30. 30.
    O. Adaba, P. Kaushik, R. O’Malley, S. Lekakh, L. Von Richards, E. Mantel, and E. Ellis: Iron Steel Technology, 2017, pp. 38–49Google Scholar
  31. 31.
    MD Seo, JW Cho, KC Kim, SH Kim: ISIJ Int. (2014), 54:475-481CrossRefGoogle Scholar
  32. 32.
    B McCoy: J. Colloid Interface Sci. (2001), 240:139-149CrossRefGoogle Scholar
  33. 33.
    X Deng, C Ji, Y Cui, Z Tian, X Yin, X Shao, Y Yang & A McLean: Ironmaking Steelmaking (2017), 44:739-749CrossRefGoogle Scholar
  34. 34.
    R. Dekkers: PhD Thesis, Kath Univ. Leuven, 2002.Google Scholar
  35. 35.
    L Zheng, A Malfliet, P Wollants, B Blanpain, M Guo: ISIJ Int. (2016), 56:926-935CrossRefGoogle Scholar
  36. 36.
    Z Deng, B Glaser, MA Bombeck, Du Sichen: Steel Res. Int. (2015), 86:1-10, CrossRefGoogle Scholar
  37. 37.
    MA van Ende, MX Guo, E Zinngrebe, R Dekkers, J Proost, B Blanpain, P Wollants: Ironmaking & Steelmaking (2009), 36:201-208CrossRefGoogle Scholar
  38. 38.
    A Pack, S Hoernes, M Goebbels, R Bross, A Buhr: Eur. J. of Mineralogy (2005), 17:483-493CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.NiebylecPoland
  2. 2.Tata Steel R&DIJmuidenThe Netherlands

Personalised recommendations