Advertisement

An Investigation of Carburization Behavior of Molten Iron for the Flash Ironmaking Process

  • Qiang Wang
  • Guangqiang LiEmail author
  • Wei ZhangEmail author
  • Yongxiang Yang
Article
  • 28 Downloads

Abstract

In order to recognize the dripping and the carburizing behaviors of the molten iron within the coke packed bed in the flash ironmaking process, a transient three-dimensional numerical model was developed. The volume of fluid (VOF) approach is used to describe the movement of the molten iron and the argon gas. The porous medium module is employed to define the momentum, heat, and mass transfer between the coke packed bed and the molten iron. Moreover, a factor is introduced to consider the influence of the ash film on the carburization process. A reasonable agreement between the experiment and simulation is obtained. The results indicate that the molten iron flows downward from the upper crucible to middle crucible. After entering the middle crucible, the molten iron spreads around within the coke packed bed and simultaneously moves downward. The carbon is, therefore, transferred from the coke to the molten iron. With the 47-mm-height coke packed bed, the carbon content in the molten iron after the carburization decreases from 3.19 to 1.97 pct, while the coke diameter ranges from 2 to 5 mm. With the 2-mm-diameter coke, the carbon content in the molten iron after the carburization increases from 2.84 to 4.81 pct, while the coke packed bed height increases from 37 to 97 mm.

Notes

Acknowledgments

The authors express their gratitude to the National Natural Science Foundation of Hubei Province, China (Grant No. 2017CFB294) and the Science and Technology Program of Beijing, China (Grant No. Z161100000716002).

References

  1. 1.
    A. Hasanbeigi, M. Arens, and L. Price: Renew. Sust. Energ. Rev., 2014, vol. 33, pp. 645–58.CrossRefGoogle Scholar
  2. 2.
    W. Zhang, J.H. Zhang, and Z.L. Xue: Energy, 2017, vol. 121, pp. 135–46.CrossRefGoogle Scholar
  3. 3.
    H.Y. Sohn and Y. Mohassab: J. Sustain. Metall., 2016, vol. 2, pp. 216–27.CrossRefGoogle Scholar
  4. 4.
    F. Chen, Y. Mohassab, T. Jiang, and H.Y. Sohn: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1133–45.CrossRefGoogle Scholar
  5. 5.
    M.E. Choi and H.Y. Sohn: Ironmak. Steelmak., 2010, vol. 37, pp. 81–88.CrossRefGoogle Scholar
  6. 6.
    H.W. Meyer, W.F. Porter, G.C. Smith, and J. Szekely: JOM, 1968, vol. 20, pp. 35–42.CrossRefGoogle Scholar
  7. 7.
    M. Ersson, L. Höglund, A. Tilliander, L. Jonsson, and P. Jönsson: ISIJ Int., 2008, vol. 48, pp. 147–53.CrossRefGoogle Scholar
  8. 8.
    H.W. Gudenau, J.P. Mulanza, and D.G.R. Sharma: Steel Res. Int., 1990, vol. 61, pp. 97–104.CrossRefGoogle Scholar
  9. 9.
    C. Wu and V. Sahajwalla: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 243–51.CrossRefGoogle Scholar
  10. 10.
    W.M. Husslage, M.A. Reuter, R.H. Heerema, T. Bakker, and A.G.S. Steeghs: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 765–76.CrossRefGoogle Scholar
  11. 11.
    D. Jang, Y. Kim, M. Shin, and J. Lee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1308–14.CrossRefGoogle Scholar
  12. 12.
    M. Shin, J.S. Oh, and J. Lee: ISIJ Int., 2015, vol. 55, pp. 2056–63.CrossRefGoogle Scholar
  13. 13.
    K. Ohno, S. Tsurumaru, A. Babich, T. Maeda, D. Senk, H.W. Gudenau, and K. Kunitomo: ISIJ Int., 2015, vol. 55, pp. 1245–51.CrossRefGoogle Scholar
  14. 14.
    S.T. Cham, V. Sahajwalla, R. Sakurovs, H.P. Sun, and M. Dubikova: ISIJ Int., 2004, vol. 44, pp. 1835–41.CrossRefGoogle Scholar
  15. 15.
    J.R. Post, T. Peeters, Y.X. Yang, and M.A. Reuter: in 2rd Int. Conf. on CFD in the Minerals and Process Industries, Melbourne, Australia, 2003, pp. 433–40.Google Scholar
  16. 16.
    Q. Wang, F.S. Qi, Z. He, Y.W. Li, and G.Q. Li: Int. J. Heat Mass Transfer, 2018, vol. 120, pp. 86–94.CrossRefGoogle Scholar
  17. 17.
    C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201–25.CrossRefGoogle Scholar
  18. 18.
    J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–54.CrossRefGoogle Scholar
  19. 19.
    Q. Wang, Y. Liu, F. Wang, G.Q. Li, B.K. Li, and W.W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2649–63.CrossRefGoogle Scholar
  20. 20.
    M. Iida, K. Ogura, and T. Hakone: ISIJ Int., 2008, vol. 4, pp. 412–19.CrossRefGoogle Scholar
  21. 21.
    F. McCarthy, V. Sahajwalla, J. Hart, and N. Saha-Chaudhury: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 573–80.CrossRefGoogle Scholar
  22. 22.
    M.B. Mourao, G.G. KrishnaMurthy, and J.F. Elliott: Metall. Trans. B, 1993, vol. 24B, pp. 629–37.CrossRefGoogle Scholar
  23. 23.
    S.M. Cho, B.G. Thomas, and S.H. Kim: ISIJ Int., 2018, vol. 58, pp. 1443–52.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanP.R. China
  2. 2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of EducationWuhan University of Science and TechnologyWuhanChina
  3. 3.Department of Materials Science and EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations