Mathematical Modeling on the Influence of Casting Parameters on Initial Solidification at the Meniscus of Slab Continuous Casting

  • Xubin Zhang
  • Wei Chen
  • Ying Ren
  • Lifeng ZhangEmail author


In the current study, the two-dimensional mold model was applied to investigate the influence of different casting parameters on the initial solidification at the meniscus of the continuous casting mold. The profile of the meniscus and the slag rim, and the heat flux on the hot face of the copper plate, were compared with different locations of the mold and different casting parameters. The depth of the oscillation marks and solidified meniscus through simulation was measured with different casting parameters. With the mold oscillating downward from the peak to the valley, the maximum heat flux on the hot face of the copper plate near the meniscus increased from 4.3 to 5.5 MW/m2, the thickness of the slag rim decreased from 4.7 to 4.2 mm, and the height of the curved meniscus also decreased. With the increase of casting speed from 1.2 to 1.45 m/min, the maximum speed of the upper backflow increased from 0.6 to 0.8 m/s, and the lowest location of the meniscus at approximately 310 mm from the copper plate decreased from 22 to 12 mm below the meniscus near the nozzle, where the slag entrapment easily occurred. With the increase of the casting speed, casting superheat, and oscillation frequency, and the decrease of the water flow rate in the mold and oscillation amplitude, the thickness of the slag rim decreased. With the increase of casting speed and superheat, and the decrease of the water flow rate in the mold, oscillation frequency, and oscillation amplitude, the depth of the solidified meniscus decreased. The regression equation was fitted to estimate the depth of hooks at the subsurface of slabs.



The authors are grateful for support from the National Science Foundation China (Grants 51725402 and 51504020), the Fundamental Research Funds for the Central Universities (Grants FRF-TP-15-001C2 and 2015021642901), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB), China.


  1. 1.
    E. Takeuchi: Ph.D. Thesis, UBC, 1984.Google Scholar
  2. 2.
    C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco, and J.L. Arana: AISTech 2006, 2006, vol. 1, pp. 1017–28.Google Scholar
  3. 3.
    B.G. Thomas: Steel Res. Int., 2018, vol. 89, pp. 1700312.CrossRefGoogle Scholar
  4. 4.
    K. Mills, P. Ramirez-Lopez, and P. Lee: High Temp. Mater. Processes, 2012, vol. 31, pp. 221–29.Google Scholar
  5. 5.
    X.B. Zhang, W. Chen, and L.F. Zhang: China Foundry, 2017, vol. 14, pp. 416–20.CrossRefGoogle Scholar
  6. 6.
    X. Zhang, W. Chen, P.R. Scheller, Y. Ren, and L. Zhang: JOM, 2018, pp.CrossRefGoogle Scholar
  7. 7.
    W. Wang, L. Zhou, and K. Gu: Met. Mater. Int., 2010, vol. 16, pp. 913–20.CrossRefGoogle Scholar
  8. 8.
    H. Zhang and W. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 779–93.CrossRefGoogle Scholar
  9. 9.
    P.E. Ramirez Lopez, P.N. Jalali, P.G. Jönsson, and K.C. Mills: ISIJ Int., 2018, vol. 58 (2), pp. 201–10.CrossRefGoogle Scholar
  10. 10.
    P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, and B. Santillana: ISIJ Int., 2010, vol. 50, pp. 1797–1804.CrossRefGoogle Scholar
  11. 11.
    E. Takeuchi and J. Brimacombe: Metall. Trans. B, 1984, vol. 15, pp. 493–509.CrossRefGoogle Scholar
  12. 12.
    P.E.R. Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43, pp. 109–22.CrossRefGoogle Scholar
  13. 13.
    J. Sengupta, B.G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1597–1611.CrossRefGoogle Scholar
  14. 14.
    E. Takeuchi and J. Brimacombe: Metall. Mater. Trans. B, 1985, vol. 16, pp. 605–25.CrossRefGoogle Scholar
  15. 15.
    S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi, and H. Horiguchi: ISIJ Int., 1990, vol. 30, pp. 310–16.CrossRefGoogle Scholar
  16. 16.
    J. Sengupta, H.-J. Shin, B. Thomas, and S.-H. Kim: Acta Mater., 2006, vol. 54, pp. 1165-73.CrossRefGoogle Scholar
  17. 17.
    P.D. Lee, P.E. Ramirezlopez, K.C. Mills, and B. Santillana: Ironmak. Steelmak., 2012, pp. 244–53.CrossRefGoogle Scholar
  18. 18.
    K.C. Mills, P. Ramirezlopez, P.D. Lee, B. Santillana, B.G. Thomas, and R. Morales: Ironmaking Steelmaking, 2014, vol. 41, pp. 242–49.CrossRefGoogle Scholar
  19. 19.
    J. Yang, Z. Cai, and M. Zhu: ISIJ Int., 2018, vol. 58, pp. 299–308.CrossRefGoogle Scholar
  20. 20.
    B.G. Thomas and L. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181–93.CrossRefGoogle Scholar
  21. 21.
    P. Ramírez-López, L.G. Demedices, O. Dávila, R. Sánchez-Pérez, and R.D. Morales: Metall. Mater. Trans. B, 2005, vol. 36, pp. 787–800.CrossRefGoogle Scholar
  22. 22.
    R. Lopez and P. Ernesto: Imperial College London, London, 2010.Google Scholar
  23. 23.
    A. Jonayat and B.G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1842–64.CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Q. Wang, W. Yang, S. Wang, and L. Zhang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2533–49.CrossRefGoogle Scholar
  25. 25.
    X. Zhang, Y. Ren, and L. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 5469–77.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingP.R. China

Personalised recommendations