Advertisement

Motion and Detachment Behaviors of Liquid Inclusion at Molten Steel–Slag Interfaces

  • Changji XuanEmail author
  • Ewa Sjöqvist Persson
  • Ruslan Sevastopolev
  • Mselly Nzotta
Article
  • 77 Downloads

Abstract

The fundamental physics of particles adsorbed at the liquid interfaces has numerous applications in a wide field. In the current study, the motion and detachment behaviors of the liquid nonmetallic inclusion from molten steel–slag interfaces were theoretically studied by developing a force balance model. According to the model calculations, the thin-film drainage is the main stage of the inclusion separation. The capillary force is the main driving force of the inclusion rebounding at the drainage stage. The effect of triple interface among the steel, slag, and inclusion after the film rupture does not seem to be the main factor for the inclusion detachment. The current model can predict the critical inclusion size of the detachment. The vertical terminal velocities of the inclusion, inclusion size, and slag surface tension are the key factors of the detachment.

Notes

Acknowledgment

The authors would like to acknowledge Uddeholms AB for the technical support.

References

  1. 1.
    N. Sinn, M. Alishahi, and S. Hardt: J. Colloid Interface Sci., 2015, vol. 458, pp. 62-68.CrossRefGoogle Scholar
  2. 2.
    H.C.Maru, D. T. Wasan, and R. C. Kintner: Chem. Eng. Sci., 1971, vol. 26, pp. 1615-1628.CrossRefGoogle Scholar
  3. 3.
    M. Preuss and H. J. Butt: J. Colloid Interface Sci., 1998, vol. 208, pp. 468–477.CrossRefGoogle Scholar
  4. 4.
    B. P. Binks and A. T. Tyowua: Soft Matter., 2016, vol. 12, pp. 876–887.CrossRefGoogle Scholar
  5. 5.
    A. M. Tawfeek and A. K. F. Dyab: J. Dispers Sci. Tech., 2014, vol. 35, pp. 265-272.CrossRefGoogle Scholar
  6. 6.
    H. Matsuura, C. Wang, G. Wen and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265-1274.CrossRefGoogle Scholar
  7. 7.
    C. Wang, N.T. Nuhfer and S. Sridhar: Meta. Mater. Trans. B, 2009, vol. 40, pp. 1005-1021.CrossRefGoogle Scholar
  8. 8.
    M. K. Sun, I. H. Jung and H. G. Lee: Metall. Mater. Int., 2008, vol. 14, pp. 791-798.CrossRefGoogle Scholar
  9. 9.
    F. Ruby-Meyer, J. Lehmann and H. Gaye: Scand. J. Metall., 2000, vol 29, pp. 206-212.CrossRefGoogle Scholar
  10. 10.
    A. V. Karasev and H. Suito: ISIJ Int., 2008, vol 48, pp. 1507-1516.CrossRefGoogle Scholar
  11. 11.
    H. Tozawa, Y. Kato, K. Sorimachi, and T. Nakanishi: ISIJ Int., 1999, vol. 39, pp. 426–34.Google Scholar
  12. 12.
    H. Lei, L. Wang, Z. Wu, and J. Fan: ISIJ Int., 2002, vol. 42, pp. 717-725.CrossRefGoogle Scholar
  13. 13.
    T. Nakaoka, S. Taniguchi, K. Matsumoto, and S. T. Johansen: ISIJ Int., 2001, vol. 41, pp.1103-1111.CrossRefGoogle Scholar
  14. 14.
    D. Q. Geng, H. Lei, and J. C. He: ISIJ Int., 2010, vol. 50, pp. 1597-1605.CrossRefGoogle Scholar
  15. 15.
    K. Nakajima and K. Okamura: Proc of 4th Int Conf on Molten Slags and Fluxes, ISIJ, Tokyo, 1992, pp. 505–10.Google Scholar
  16. 16.
    J. Strandh, K. Nakajima, R. Eriksson and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597-1606.CrossRefGoogle Scholar
  17. 17.
    J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838-1847.CrossRefGoogle Scholar
  18. 18.
    M. Valdez, G. S. Shannon, and S. Sridhar: ISIJ Int., 2006, vol. 4, pp. 450-457.CrossRefGoogle Scholar
  19. 19.
    D. Bouris and G. Bergeles: Meta. Mat. Trans. B, 1998, vol. 29, pp. 641-649.CrossRefGoogle Scholar
  20. 20.
    C. Liu, S. Yang, J. Li, L. Zhu, X. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1882-1892.CrossRefGoogle Scholar
  21. 21.
    S. Yang, J. Li, C. Liu, L. Sun and H. Yang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2453-2463.CrossRefGoogle Scholar
  22. 22.
    S. Sridhar and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 406-410.CrossRefGoogle Scholar
  23. 23.
    [23] M. Valdez, K. Prapakorn and A.W. Cramb and S. Sridhar: Ironmak. Steelmak., 2002, vol. 29, pp. 47-52.CrossRefGoogle Scholar
  24. 24.
    W.D. Cho and P. Fan: ISIJ Int., 2004, vol. 44, pp. 229-234.CrossRefGoogle Scholar
  25. 25.
    W. Z. Mu, N. Dogan, and K. S. Coley: J. Mater. Sci. 2018, vol. 53, pp. 13203-13215.CrossRefGoogle Scholar
  26. 26.
    K.J. Malmberg, H. Shibata, S.Y. Kitamura, P.G. Jönsson, S. Nabeshima, and Y. Kishimoto: J. Mater. Sci., 2010, vol. 45, pp. 2157–64.  https://doi.org/10.1007/s10853-009-3982-x.
  27. 27.
    W. D. Griffiths, Y. Beshay, D. J. Parker, and X. Fan: J. Mater. Sci., 2008, vol. 43, pp. 6853-6856.CrossRefGoogle Scholar
  28. 28.
    C. Xuan, A. V. Karasev, and P. G. Jönsson: ISIJ Int., 2016, vol. 56, pp. 1204-1209.CrossRefGoogle Scholar
  29. 29.
    C. Xuan, A.V. Karasev, P.G. Jönsson, and K. Nakajima: Steel Res. Int., 2016, vol. 88,  https://doi.org/10.1002/srin.201600090.
  30. 30.
    M. Nikolaides: Ph. D thesis, Technische Universität München, 2001, pp. 1-83.Google Scholar
  31. 31.
    J. Folter, V. Villeneuve, D. Aarts, and H. Lekkerkerker: New J. Phy., 2010, vol. 12, pp. 1-24.Google Scholar
  32. 32.
    M. Manga and H. A. Stone: J. Fluid Mech., 1995, vol. 287, pp. 279-298.CrossRefGoogle Scholar
  33. 33.
    N. Dietrich, S. Poncin, and H. Z. Li: Exp. Fluids, 2011, vol. 50, pp. 1293-1303.CrossRefGoogle Scholar
  34. 34.
    A. S. Geller, S. H. Lee, and L. G. Leal: J. Fluid Mech., 1986, vol. 169, pp. 27-69.CrossRefGoogle Scholar
  35. 35.
    R. S. Allan, G. E. Charles, and S. G. Mason: J. Colloid Interface Sci., 1961, vol. 16, pp. 150-165.CrossRefGoogle Scholar
  36. 36.
    J. Happel and H. Brenner: Low Reynolds number hydrodynamics. Prentice Hall, New York, 1965.Google Scholar
  37. 37.
    M. R. Maxey and J. J. Riley: Phys. Fluids, 1983, vol. 26, pp. 883–889.CrossRefGoogle Scholar
  38. 38.
    J. S. Hadamard: C. R. Acad. Sci., 1911, vol. 152, pp. 1735-1738.Google Scholar
  39. 39.
    W. Rybezynski: Bull Int. Acad. Pol. Sci. Lett. Cl. Sci. Math. Natur. Ser. A, 1911, pp. 40–46.Google Scholar
  40. 40.
    J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, 2nd ed. Noordhoff, Leyden, Netherlands, 1973.Google Scholar
  41. 41.
    C. Tchen: J. Appl. Phys., 1954, vol. 25, pp. 463-473.CrossRefGoogle Scholar
  42. 42.
    D.S. Conochie and D.G. Robertson: A ternary interfacial energy diagram. Gas Injection into Liquid Metals, compiled by A. E. Wraith, University of Newcastle upon Tyne, Newcastle upon Tyne, 1979, pp. C61–4.Google Scholar
  43. 43.
    W. F. Holbrook and T. L. Joseph: Trans AIME, 1936, vol. 120, pp. 99-117.Google Scholar
  44. 44.
    W. O. Philbrook and L. D. Kirkbride: Trans AIME, 1956, vol. 206, pp. 351-356.Google Scholar
  45. 45.
    J. X. Deng and F. Oeters: Steel Res., 1988, vol. 61, pp. 438-448.CrossRefGoogle Scholar
  46. 46.
    P. Pieranski: Phys. Rev. Lett., 1980, vol. 45, pp. 569-572.CrossRefGoogle Scholar
  47. 47.
  48. 48.
    M. D. Higgins: Am. Mineral., 2000, vol. 85, pp. 1105-1116.CrossRefGoogle Scholar
  49. 49.
    C.J. Xuan and W. Mu: J. Am. Ceram. Soc., 2019 (accepted).Google Scholar
  50. 50.
    T. Tanaka, T. Kitamura, and I. A. Back: ISIJ Int., 2006, vol. 46, pp. 400-406.CrossRefGoogle Scholar
  51. 51.
    K. C. Mills and B. J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1-120.CrossRefGoogle Scholar
  52. 52.
    NIST Molten Salt Database, National Institute of Standards and Technology, 1987.Google Scholar
  53. 53.
    M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47, pp. 38-43.CrossRefGoogle Scholar
  54. 54.
    R. D. Shannon: Acta. Crys., 1976, vol. A32, pp. 751-767 doi.org/10.1107/S0567739476001551.CrossRefGoogle Scholar
  55. 55.
    J. P. Hajra, H. K. Lee, and M. G. Frohberg: Z. Metallk., 1991, vol. 82, pp. 603-608.Google Scholar
  56. 56.
    Y. C. Su, K. C. Mills, and A. Dinsdale: J. Mater. Sci., 2005, vol. 40, pp. 2185-2190.CrossRefGoogle Scholar
  57. 57.
    A.W. Cramb and I. Jimbo: ET Turkdogan Symp ISS, 1994, pp. 195–206.Google Scholar
  58. 58.
    A. Kasama, A. McLean, W. A. Miller, Z. Morita, and M. J. Ward: Can. Met. Q., 1983, vol. 22, pp. 9-17.CrossRefGoogle Scholar
  59. 59.
    Z. Li, M. Zeze, and K. Mukai: Mater. Trans., 2003, vol. 44, pp. 2108-2113.CrossRefGoogle Scholar
  60. 60.
    Y. Chung and A. W. Cramb: Meta. Mater. Trans. B, 2000, vol. 31, pp. 957-971.CrossRefGoogle Scholar
  61. 61.
    Z. Jun and K. Mukai: ISIJ Int., 1998, vol. 38, pp. 1039-1044.CrossRefGoogle Scholar
  62. 62.
    K. Mukai, Z. S. Li, and M. Zeze: Mater. Trans., 2002, vol. 43, pp. 1724-1731.CrossRefGoogle Scholar
  63. 63.
    J. Lee, K. Yamamoto, and K. Morita: Meta. Mater. Trans. B, 2005, vol. 36, pp. 241-246.CrossRefGoogle Scholar
  64. 64.
    M. Hino and K. Ito: The 19th Committee in Steelmaking, JSPS, Published by Tohoku University Press, Japan, 2010.Google Scholar
  65. 65.
    The Japan Society for Promotion of Science, The 19th Committee in Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, 1988.Google Scholar
  66. 66.
    N. Satoh, T. Taniguchi, S. Mishima, T. Oka, T. Miki, and M. Hino: Tetsu-to-Hagané, 2009, vol. 95, pp. 827-836.CrossRefGoogle Scholar
  67. 67.
    K. H. Do, Y. D. Kim, D. S. Kim, Y. Chung, and J. J. Pak: ISIJ Int., 2015, vol. 55, pp. 934-939.CrossRefGoogle Scholar
  68. 68.
    L. A. Girifalco and R. J. Good: J. Phys. Chem., 1957, vol. 61, pp. 904-909.CrossRefGoogle Scholar
  69. 69.
    T. Tanaka, M. Nakamoto, and J. Lee: Proc. Metal Separation Technology Held Copper Mountain, Junre edited R E Aune and M. Kekkonen publ. Helsinki Univ. Technol., 2004, pp. 135–42.Google Scholar
  70. 70.
    P. Fredriksson and S. Seetharaman: Ironmaking and steelmaking, 2005, vol. 32, pp. 47-53.CrossRefGoogle Scholar
  71. 71.
    R. F. Brooks, A. P. Day, R. J. L. Andon, L. A. Chapman, K. C. Mills, and P. N. Quested: High Temperatures-High Pressures, 2001, vol. 33, pp. 73-82.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Changji Xuan
    • 1
    Email author
  • Ewa Sjöqvist Persson
    • 1
  • Ruslan Sevastopolev
    • 1
  • Mselly Nzotta
    • 1
  1. 1.Uddeholms AB (A Voestalpine Company)HagforsSweden

Personalised recommendations