Advertisement

A Finite-Element Approach for the Partitioning of Carbon in Q&P Steel

  • Julio C. Gonzalez L.
  • Wei LiEmail author
  • Yu GongEmail author
  • XueJun Jin
Article
  • 49 Downloads

Abstract

This paper reports a Galerkin finite-element analysis of carbon partitioning from martensite into austenite during the quenching and partitioning (Q&P) processes in steels. In contrast to classical or sophisticated diffusion field models, an alternative nonlinear governing equation based on chemical potential and composition is considered. The model is applied to simulate the carbon partitioning of modified 22MnB5 alloys assuming an immobile austenite–martensite phase boundary and, in turn, is compared with experimental measurements of the volume fraction and carbon content of retained austenite. The simulations show outstanding results on the influence of Si and C content on the partitioning parameters.

Notes

Acknowledgments

The authors are grateful to the financial support of the National Key Research and Development Program of China (No. 2017YFB0304401) (No. 2017YFB0703003), National Natura Science Foundation of China (U1564203, Nos.51571141 and 51201105), and the Interdisciplinary Program of Shanghai Jiao Tong University (No.YG2014MS23). Julio C. Gonzalez Lainez is grateful to Professor Wei Li and Doctor Yu Gong, School of Materials Science & Engineering, Shanghai Jiao Tong University, for the stimulating discussions that contributed to guide this research all along its development. The authors are very gratefully to the support provided by the Chinese Scholarship Council (CSC).

References

  1. 1.
    J. Speer, D. K. Matlock, B. C. D. Cooman, and J. G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–2622.CrossRefGoogle Scholar
  2. 2.
    J. Speer, A. Streicher, D. Matlock, F. Rizzo, and G. Krauss: in Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of: Austenite Formation and Decomposition, 2003, pp. 505–22.Google Scholar
  3. 3.
    Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–498.CrossRefGoogle Scholar
  4. 4.
    S. Keeler and M. Kimchi: Advanced High-Strength Steels Application Guidelines V5, WorldAutoSteel, 2015.Google Scholar
  5. 5.
    S. A. Mujahid and H. K. D. H. Bhadeshia: Acta Metall. Mater., 1992, vol. 40, pp. 389–96.CrossRefGoogle Scholar
  6. 6.
    E. J. Seo, L. Cho, and B. C. De Cooman: Acta Mater., 2016, vol. 107, pp. 354–365.CrossRefGoogle Scholar
  7. 7.
    D.V. Edmonds, K. He, F.C. Rizzo, B.C.D. Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25–34.CrossRefGoogle Scholar
  8. 8.
    F. Peng, Y. Xu, X. Gu, Y. Wang, X. Liu, and J. Li: Mater. Sci. Eng. A, 2018, vol. 723, pp. 247–258.CrossRefGoogle Scholar
  9. 9.
    B. M. Linke, T. Gerber, A. Hatscher, I. Salvatori, I. Aranguren, and M. Arribas: Metall. Mater. Trans. A, 2018, vol. 49, pp. 54–65.CrossRefGoogle Scholar
  10. 10.
    J. O. Andersson, T. Helander, L. Hglund, P. Shi, and S. Bo: CALPHAD, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  11. 11.
    O. Dmitrieva, D. Ponge, G. Inden, J. Milln, P. Choi, J. Sietsma, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 364–374.CrossRefGoogle Scholar
  12. 12.
    D. A. Porter, K. E. Easterling, and M. Sherif: Ref. User Services Q., 1992, vol. 1, p. 245.Google Scholar
  13. 13.
    A. J. Clarke, J. G. Speer, D. K. Matlock, F. C. Rizzo, D. V. Edmonds, and M. J. Santofimia: Scr. Mater., 2009, vol. 61, pp. 149–152.CrossRefGoogle Scholar
  14. 14.
    J. N. Reddy: An Introduction to the Finite Element Method, vol. 2, McGraw-Hill, 1993.Google Scholar
  15. 15.
    T. R. Chandrupatla, A. D. Belegundu, T. Ramesh, and C. Ray: Introduction to finite elements in engineering, vol. 2, Prentice Hall , Upper Saddle River, NJ, 2002.Google Scholar
  16. 16.
    D. L. Logan: A First Course in the Finite Element Method, Cengage Learning, 2011.Google Scholar
  17. 17.
    T. Dupont, G. Fairweather, and J. P. Johnson: SIAM J. Numer. Anal., 1974, vol. 11, pp. 392–410.CrossRefGoogle Scholar
  18. 18.
    C. Li and B. G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1151–1172.CrossRefGoogle Scholar
  19. 19.
    M. J. Santofimia, J. G. Speer, A. J. Clarke, L. Zhao, and J. Sietsma: Acta Mater., 2009, vol. 57, pp. 4548–4557.CrossRefGoogle Scholar
  20. 20.
    A.S. Nishikawa, M.J. Santofimia, J. Sietsma, and H. Goldenstein: Acta Mater., 2018, vol. 142, 142–151.CrossRefGoogle Scholar
  21. 21.
    B. Zhu, Z. Liu, Y. Wang, B. Rolfe, L. Wang, and Y. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1304–1312.CrossRefGoogle Scholar
  22. 22.
    D. Koistinen and R. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.CrossRefGoogle Scholar
  23. 23.
    E. J. Seo, L. Cho, and B. C. D. Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3797–3802.CrossRefGoogle Scholar
  24. 24.
    S. Van Bohemen and J. Sietsma: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1059–1068.CrossRefGoogle Scholar
  25. 25.
    S.-J. Lee and C. J. Van Tyne: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 422–427.CrossRefGoogle Scholar
  26. 26.
    M. Chen, R. Wu, H. Liu, L. Wang, J. Shi, H. Dong, and X. Jin: Science China Technological Sciences, 2012, vol. 55, pp. 1827–32.CrossRefGoogle Scholar
  27. 27.
    K. Zhang, M. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8486–91.CrossRefGoogle Scholar
  28. 28.
    A. Kokosza and J. Pacyna: Metall. Mater. Trans. A, 2008, vol. 31, p. 593–99.Google Scholar
  29. 29.
    D.T. Pierce, D.R. Coughlin, K.D. Clarke, E.D. Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, and A.J. Clarke: Acta Mater., 2018, vol. 151.Google Scholar
  30. 30.
    Z.B. Tong, T. Di, J.H. Tao: J. Univ. Sci. Technol. Beijing, 2012, vol. 34, pp. 1288–1293.Google Scholar
  31. 31.
    M.J. Khknen, E.D. Moor, J. Speer, and G. Thomas: SAE Int. J. Mater. Manuf., 2015, vol. 8.Google Scholar
  32. 32.
    T. Y. Hsu and X. Jin: Ultra-high Strength Steel Treated by Using Quenching–Partitioning–Tempering Process, Springer Berlin Heidelberg, 2011.CrossRefGoogle Scholar
  33. 33.
    J. Kahkonen: Ph.D. Thesis, Colorado School of Mines. Arthur Lakes Library, 2016.Google Scholar
  34. 34.
    E. D. Moor, S. Lacroix, A. J. Clarke, J. Penning, and J. G. Speer: Metall. Mater. Trans. A, 2008, vol. 39A, p. 2586.CrossRefGoogle Scholar
  35. 35.
    S.-J. Lee, D. K. Matlock, and C. J. Van Tyne: ISIJ Int., 2011, vol. 51, pp. 1903–1911.CrossRefGoogle Scholar
  36. 36.
    J. Gren: Acta Metall., 30, pp. 841–851 (1982).CrossRefGoogle Scholar
  37. 37.
    L.O. Wolf, F. Nrnberger, D. Rodman, and H. J. Maier: Steel Res. Int., 88: 271 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations