Advertisement

Analysis of Hot- and Cold-Rolled Loads in Medium-Mn TRIP Steels

  • M. F. BuchelyEmail author
  • D. M. Field
  • D. C. Van Aken
Article
  • 29 Downloads

Abstract

The purpose of this work is to investigate the hot- and cold-rolling requirements to produce third-generation advanced high-strength steels (AHSS). Therefore, five medium-Mn (10 to 14 wt pct Mn) alloys that exhibit transformation-induced plasticity (TRIP) were compared to a commercially produced grade of AISI 1018 using hot- and cold-rolling experiments. Experimental data collected from a STANAT instrumented rolling mill was utilized to measure force and torque during hot- and cold-rolling. Experimental data were processed by a 1D analytical model, based on Orowan model, to determine rolling pressure. It was determined that pressures required to hot-roll TRIP alloys are 1.4 to 1.8 times greater than pressures for rolling AISI 1018 steel. Cold rolling of the medium-Mn TRIP steels was found to be 1.5 to 2.8 times greater than the AISI 1018 steel. Mechanical and microstructural characterization was also performed and the variation in rolling pressure was related to the starting microstructural constituents, and alloys containing greater starting quantities of ε-martensite in the microstructure had higher flow stresses at equivalent rolling strains during cold rolling.

Notes

Acknowledgments

This work was supported by the Peaslee Steel Manufacturing Research Center (PSMRC). Companies directly involved in this work include AK Steel, ArcelorMittal, Nucor Steel, and U.S. Steel. Special thanks are also extended to Dr. Narayan Pottore and Dr. Bernard Chukwulebe at ArcelorMittal, Todd Link from U.S. Steel, Eric Gallo at Nucor, and Dr. Luis Garza from AK Steel for their discussion and guidance on the engineering requirements for future 3rd generation advanced high strength steels. The FEI Helios NanoLab dual beam FIB was obtained with a Major Research Instrumentation Grant from the National Science Foundation under Contract DMR-0723128.

References

  1. 1.
    D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs: Jestech, 2012, vol. 15, pp. 1–12.Google Scholar
  2. 2.
    E. ParaviciniBagliani, M.J. Santofimia, L. Zhao, J. Sietsma, and E. Anelli: Mater. Sci. Eng. A, 2013, vol. 559, pp. 486–95.CrossRefGoogle Scholar
  3. 3.
    P.C. Wolfram: MSc. Thesis, Colorado School of Mines, 2013.Google Scholar
  4. 4.
    X. Tan, Y. Xu, X. Yang, Z. Liu, and D. Wu: Mater. Sci. Eng. A, 2014, vol. 594, pp. 149–60.CrossRefGoogle Scholar
  5. 5.
    S. Yan, X. Liu, W.J. Liu, H. Lan, and H. Wu: Mater. Sci. Eng. A, 2015, vol. 620, pp. 58–66.CrossRefGoogle Scholar
  6. 6.
    M. Karam-Abian, A. Zarei-Hanzaki, H.R. Abedi, and S. Heshmati-Manesh: Mater. Sci. Eng. A, 2016, vol. 651, pp. 233–40.CrossRefGoogle Scholar
  7. 7.
    Q. Li, X. Huang, and W. Huang: Mater. Sci. Eng. A, 2016, vol. 662, pp. 129–35.CrossRefGoogle Scholar
  8. 8.
    E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124–39.CrossRefGoogle Scholar
  9. 9.
    L. Cho, E.J. Seo, and B.C. De Cooman: Scr. Mater., 2016, vol. 123, pp. 69–72.CrossRefGoogle Scholar
  10. 10.
    J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao: Scr. Mater., 2010, vol. 63, pp. 815–8.CrossRefGoogle Scholar
  11. 11.
    D. Suh, S.J. Park, T. Lee, C. Oh, and S. Kim: Metall. Mater. Trans. A, 2010, vol. 41, pp. 397–408.CrossRefGoogle Scholar
  12. 12.
    D. Suh, J. Ryu, M. Joo, H. Yang, K. Lee, and H. Bhadeshia: Metall. Mater. Trans. A, 2013, vol. 44, pp. 286–93.CrossRefGoogle Scholar
  13. 13.
    R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang: Mater. Sci. Eng. A, 2013, vol. 583, pp. 84–8.CrossRefGoogle Scholar
  14. 14.
    Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying: Acta Mater., 2015, vol. 84, pp. 229–36.CrossRefGoogle Scholar
  15. 15.
    H. Luo, H. Dong, and M. Huang: Mater. Des., 2015, vol. 83, pp. 42–8.CrossRefGoogle Scholar
  16. 16.
    D.M. Field and D.C. Van Aken: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1912–7.CrossRefGoogle Scholar
  17. 17.
    D.M. Field and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1152–66.CrossRefGoogle Scholar
  18. 18.
    A.R. Shahani, S. Setayeshi, S.A. Nodamaie, M.A. Asadi, and S. Rezaie: J. Mater. Process. Technol., 2009, vol. 209, pp. 1920–35.CrossRefGoogle Scholar
  19. 19.
    S. Chen, W. Li, and X. Liu: Int. J. Mech. Sci., 2014, vol. 89, pp. 256–63.CrossRefGoogle Scholar
  20. 20.
    S. Li, Z. Wang, C. Liu, J. Ruan, and Z. Xu: Int. J. Adv. Manuf. Technol., 2017, vol. 88, pp. 2053–9.CrossRefGoogle Scholar
  21. 21.
    E. Larke: The Rolling of Strip, Sheet and Plate, Chapman & Hall, 1967.Google Scholar
  22. 22.
    Z. Wusatowski: Fundamentals of Rolling, Pergamon Press, Oxford, 1969.CrossRefGoogle Scholar
  23. 23.
    V. Ginzburg: Steel-Rolling Technology: Theory and Practice, Marcel Dekker, Inc, New York, 1989.CrossRefGoogle Scholar
  24. 24.
    J.G. Lenard: Primer on Flat Rolling, 2nd Ed., Elsevier Ltd, Amsterdam, 2014.Google Scholar
  25. 25.
    M. Bagheripoor and H. Bisadi: Prod. Manuf. Res., 2014, vol. 2, pp. 128–41.Google Scholar
  26. 26.
    R. Siddhartha: in Principles and Applications of Metal Rolling, Cambridge University Press, Cambridge, 2015, pp. 30–103.Google Scholar
  27. 27.
    M.F. Buchely, X. Wang, D.C. Van Aken, R.J. O’Malley, S.N. Lekakh, and K. Chandrashekhara: in Proceedings on the 2nd International Symposium on The Recent Development in Plate Steels, AIST, Orlando, FL, 2018, pp. 93–101.Google Scholar
  28. 28.
    D.M. Field, J. Qing, and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4615–4632.CrossRefGoogle Scholar
  29. 29.
    E. Orowan: Proc. Inst. Mech. Eng., 1943, vol. 150, pp. 140–67.CrossRefGoogle Scholar
  30. 30.
    S.T. Pisarik and D.C. Van Aken: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1009–18.CrossRefGoogle Scholar
  31. 31.
    D.M. Field, D.S. Baker, and D.C. Van Aken: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2150–63.CrossRefGoogle Scholar
  32. 32.
    G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–904.Google Scholar
  33. 33.
    M.F. Buchely, X. Wang, D.C. Van Aken, R.J. O’Malley, S.N. Lekakh, and K. Chandrashekhara: J. Eng. Mater. Technol., 2019, vol. 141, p. 12.CrossRefGoogle Scholar
  34. 34.
    G.R. Johnson and W.H. Cook: in Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541–47.Google Scholar
  35. 35.
    ASTM E8-16a: ASTM Int., 2016.Google Scholar
  36. 36.
    36 S. Martin, C. Ullrich, D. Imek, U. Martin, and D. Rafaja: J. Appl. Crystallogr., 2011, vol. 44, pp. 779–87.CrossRefGoogle Scholar
  37. 37.
    D.C. Van Aken, S. Pisarik, and M.C. McGrath: in Proceedings of the Intl. Symp. on New Developments in Advanced High-Strength Steels, 2013, pp. 119–29.Google Scholar
  38. 38.
    S.T. Pisarik, D.C. Van Aken, K. Limmer, and J.E. Medvedeva: in AIST2014 Proceedings, 2014, pp. 3013–3023.Google Scholar
  39. 39.
    J.G. Lenard and L. Barbulovic-Nad: J. Tribol., 2002, vol. 124, p. 840.CrossRefGoogle Scholar
  40. 40.
    P. Munther and J.G. Lenard: CIRP Ann., 1995, vol. 44, pp. 213–6.CrossRefGoogle Scholar
  41. 41.
    G. Dieter: Mechanical Metallurgy, 4th edn., McGraw-Hill, New York, 1986.Google Scholar
  42. 42.
    R.B. Sims: Proc. Inst. Mech. Eng., 1954, vol. 168, pp. 191–200.CrossRefGoogle Scholar
  43. 43.
    B. Sun, H. Aydin, F. Fazeli, and S. Yue: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1782–91.CrossRefGoogle Scholar
  44. 44.
    M.C. McGrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4634–43.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMissouri University of S&TRollaUSA

Personalised recommendations